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Congruences

Let n€ N and a, b € Z. We say that
a is congruent to b modulo n, and we write

a= bmod n,
ifn|(a—b).

36 = 16 = —4 mod 10.
a=bmod 1 for all a,b € Z.
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The set Z/nZ

If a= bmod nand b= cmod n, then a = ¢ mod n, because
a—c=(a—b)+(b—o).

So if we fix n € N, we can sort the integers into “bags” of
congruence.

For n = 2, we have 2 bags

{,-4,-2,0,2,4,---} and {-- —-1,1,3,5,--- }.
For n = 3, we have 3 bags

{+,-6,-3,0,3,6,---}, {- -2,1,4,7,---}, and
{”'7_4-7_1727578 }

Definition

The set of these “bags” is called Z/nZ.
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The set Z/nZ

Let x € Z, and let x = nq + r be its division by n. Then
X = rmod n.
Conversely, if 0 < x, ¥y < n, then x Z y mod n unless x = y.

Theorem
Let n € N. The set Z/nZ has exactly n elements:

0={x€Z|x=0mod n} ={nq, q€Z},
1={x€Z|x=1modn} ={ng+1, qeZ},
2={x€Z|x=2mod n} ={nqg+2, g€ Z},

n—1={x€Z|x=n—1mod n} ={ng+n—1, q€ Z}.
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The ring Z/nZ
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Operations in Z/nZ

Fix n€ N, and let X, Y € Z/nZ. In order to define X+ Y, we
take x € X, y € Y, and we say that X+ Y'is the bag
containing x+ y. Similarly, XY is the bag containing xy.

Take n:5,X:§:{-.. ’—3’2’7’...}, and
Y=3=1{"-,-2,38,---}. Then
X+ Y= bag containing2+3=1{---,-5,0,5,---} =0,
XY = bag containing 2 x 3={---,—4,1,6,---} = 1.

Lemma

Let ne€ N, and let a,ad', b, b € 7Z be such that a = & mod n
and b= b mod n. Then a-+ b= 4a + b mod n,
a—b=4d — b mod n, and ab= a'b mod n.
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Operations in Z/nZ

Lemma

Let ne N, and let a,d’, b, bl € Z be such that a= a mod n
and b= b mod n. Then a+ b= 43 + b mod n,

a—b=4d — b mod n, and ab= a'b' mod n.

Proof.

a= a mod n means & — a = kn for some k € Z;
similarly b — b = In for some | € Z. Then

(@+b)—(a+b)=(d—a)+ W —b)=kn+ In=(k+ )n,
(d—b)—(a—b)=(d —a)— (b —b)=kn—In=(k—)n,
(a'b) — (ab) = a'b' — ab' + ab — ab

=(d —a)b + a(b — b)
= knb' + aln
— (kb + al)n. 0
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The ring Z/nZ

Computing in Z/nZ means that we treat multiples of n as 0.
So we can replace any integer with its remainder by n. And
x=Yyiff. x=ymod n.

In Z/127Z, we have 7Tx 8 —9=56—-9=8—-9=—-1=11
In Z/13Z, we have Tx 8 —9=56—-9=4—-9= -5 =8,

Although Z/nZ = {0,1,2,--- ,n — 1}, computations are
easier with a more symmetric choice of representatives. For
instance, in Z/12Z = {—5,—4,--- ,5,6}, we have

Tx8—9=-5x—-44+43=20+3=—-4+3=-1.

Z/nZ is a ring: a set in which we can +, —, X.
For division, we will see later!
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Application to Diophantine
equations
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Suppose we have a Diophantine equation
F(Xa.ya"'): C

where Fis a polynomial with coefficients in Z, and C € Z.
If x=a,y=b,--- is a solution, then for all n € N, in Z/nZ
we have

F(a,b,---)=C
So conversely, if for some n € N the equation has no solution
in Z/nZ, then it has no solution in Z.

The point is that Z/nZ is finite, so we only need to check
finitely many possibilities for x, y, - - - to disprove the existence
of solutions in Z!
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Example 1: sum of two squares

Does x* + y* = 2019 have integral solutions?
Take n=4: In Z/4Z, we have

But 2019 = 19 = —1 ¢ {0, 1, 2}, so no solutions in Z/4Z, so
no solutions in Z either!

Similarly, no solutions to x> + y? = 4k — 1 for any k € Z.

5x2 — Ty = 4k — 1 either.



Example 2: sum of three cubes

In Z/97Z, we have

Therefore, for all C € Z, if C = +4 mod 9, then the
Diophantine equation x* + y* + 2> = C has no solutions.

Example: C =31, C = 32.
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Invertible elements in Z/nZ
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Invertible elements in Z/nZ

Definition

An element x € Z/nZ is invertible if there exists y € Z/n’Z
such that xy = 1. Such an y is then unique, and is denoted
by x71.

Indeed, if xy = xy =1, then y = yxy = y/.

In Z/11Z, 2 is invertible, with inverse 6, since 2 x
Thus 2 ' =6 = —5.

Counter-example

In Z/4AZ, we have 2y € {0,2} for all y € Z/4Z, so 2 is not
invertible.
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Invertible elements in Z/nZ

Definition

An element x € 7/nZ is invertible if there exists y € 7./n’Z
such that xy = 1. Such an y is then unique, and is denoted
by x7!

—~
~—

Definition (Division in Z/nZ

Let x,y € Z/nZ. If y is invertible, then we define
x/y=xxy"

Else, the division x/y is forbidden.

Example

In Z/11Z, we have 3/2 = 3 x

l\Dl
o;:l
cnl
oo|
\II

In Z/4AZ, 3/2 makes no sense.
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Characterisation of invertibles in Z/nZ

Theorem (Invertibility test)
Let x € Z and n € N. Then X is invertible in Z/nZ iff.
ged(x, n) = 1.

X invertible <= Xy = 1 for some y € Z

<= xy = 1 mod n for some y € Z
<= xy = 1+ nk for some y. k € Z
<= xy — nk =1 for some y, k € Z
<= ged(x, n) = 1. ]

Bézout
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Characterisation of invertibles in Z/nZ

X invertible <= xy =1 for some y € Z
<= xy = 1 mod n for some y € Z
<= xy = 1+ nk for some y. k € Z
<= xy— nk=1 for some y, k € Z
<= ged(x, n) = 1. O

Bézout

Example

By Euclid's algorithm, we see that ged(8,27) =1, so 8 is
invertible mod 27. Working backwards, we find that
Su+27v=1foru=—10, v=3:508 ' = —10 = 17.
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Characterisation of invertibles in Z/nZ

Theorem (Invertibility test)

Let x € Z and n € N. Then X is invertible in Z/nZ iff.
ged(x, n) = 1.

Theorem (Simplifiability)

x € Z/nZ is invertible iff. for all L, R € Z/nZ,
xL = xR implies L = R.

If x is invertible, then xL = xR implies x 'xL = x 'xR.

Conversely, if xL = xR always implies L = R, then the map

Z/nZ — Z/nZ
y Xy

Z/nZ is finite, hence surjective, so there exists y such

that xy = 1. O
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Characterisation of invertibles in Z/nZ

Theorem (Invertibility test)
Let x € Z and n € N. Then X is invertible in Z/nZ iff.
ged(x, n) = 1.

Theorem (Simplifiability)
x € Z/nZ is invertible iff. for all L,R € Z/nZ,
xL = xR implies L = R.

In Z/27Z, 8x =5 < x=8"1 x5=—10x 5 = 4.

Counter-example

In Z/AZ, the solutions to 2x = 0 are x =0 and x = 2;
whereas 2x = 1 has no solutions.
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Primes are a nice case

Let n € N. TFAE:
@ Every nonzero x € 7/ nZ is invertible,
@ Forallx,y€ Z/nZ, xy=0only ifx=0 ory=0,

@ nis prime.

Counter-example

In Z/6Z, 2 # 0 is not invertible, and 2 x 3 = 0.

4

Nicolas Mascot Introduction to number theory



Primes are a nice case

Let n € N. TFAE:
@ Every nonzero x € 7./ nZ is invertible,
@ Forallx,y€Z/nZ, xy=0only ifx=0ory=0,

@ nis prime.

(1) = (2): If xy=10and x# 0, then y = x"'xy = x10 = 0.
(2) = (3): If n=ab, thenab=n=0,s03aor bis0,s0n| a
orn|b soa=norb=n.

(3) = (1): f 3#0, then nt a, so ged(a,n) =1 as nis

prime. []
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The group of invertibles and Euler’s totient

Proposition

Invertible elements in Z/nZ for a group under multiplication,

denoted by
(Z/nZ)* = {x € Z/nZ | x invertible}.

In other words, x,y € (Z/nZ)* = xy € (Z/nZ)*.

Definition

Euler’s totient function is

o(n) = #(Z/nZ)* = #{0 < x< n | ged(x,n) = 1}.

(Z/6Z)% = {I, -1}, so ¢(6) = 2.

We will see a formula for ¢(n) very soon.



Chinese remainders
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Reduction maps

Let n € N. Given x € Z, we can consider its image in Z/nZ
~> reduction map Z — Z/nZ.
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Reduction maps

Let n € N. Given x € Z, we can consider its image in Z/nZ
~> reduction map Z — Z/nZ.

If now m, n € N, do we have a map such that

commutes?
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Reduction maps

Let n € N. Given x € Z, we can consider its image in Z/nZ
~> reduction map Z — Z/nZ.

If now m, n € N, do we have a map such that

commutes?

Yes iff. for all x, X € Z, x= X mod m = x= X mod n.
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Reduction maps

Let n € N. Given x € Z, we can consider its image in Z/nZ
~> reduction map Z — Z/nZ.

If now m, n € N, do we have a map such that

commutes?
Yes iff. for all x, X € Z, x= X mod m = x= X mod n.

In particular, we must have m =0 mod n, i.e. n| m.
Conversely, if n | m, then

x=Xmod m<= m| (x—X) = n| (x—X) <= x= X mod n.
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Reduction maps

If now m, n € N, do we have a map such that

commutes?

We have a reduction map Z./mZ — 7./nZ iff. n| m.

We have a reduction map from Z/6Z to Z/27Z, e.g.
5 mod 6 — 1 mod 2.

But we do not have a reduction map from Z/67Z to Z/4AZ.
Indeed, 5 mod 6 could be 1 mod 4, but also 3 mod 4.

Nicolas Mascot Introduction to number theory




The Chinese remainders problem

Let now m, n € N. Given y, z € Z, can we find x € Z such that

x = ymod m,
x=zmod n?

Find x € Z such that x=1 mod 7 and x = 2 mod 9.
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The Chinese remainders problem

Let now m, n € N. Given y, z € Z, can we find x € Z such that

{ x = ymod m,

x=zmodn?

Not always! Let g = gcd(m, n). Then we have reduction maps
7

7] mZ Z/nZ

\ /
Z/gZ,

so no solution if y and z do not have the same image in Z/gZ.

There is no x € Z such that x= 5 mod 6 and x = 2 mod 4.

~ we will suppose that ged(m, n) = 1 from now on.
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The Chinese remainders theorem

Theorem (CRT)

Let m,n € N be coprime. Then the map
th Z/mnZ  — (Z/mZ) x (Z/nZ)
" (xmod mn) +—— (xmod m,xmod n)
is bijective.

Proof.

We construct its inverse. Since m and n are coprime, there
exist u, v € Z such that mu+ nv=1. Then F(mu) = (0, 1)
and Hi(nv) = (1,0). Thus for all y,z € Z, we have
1 (ynv+ zmu) = (y, z), so

(Z/mZ) x (Z/nZ) — Z/mnZ

(ymod m,zmod n) +— ynv+ zmu mod mn
is an inverse of HI. ]
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The Chinese remainders theorem
Theorem (CRT)

Let m,n € N be coprime. Then the map
a Z/mnZ  — (Z/mZ) x (Z/nZ)
" (xmod mn) +—— (xmod m,xmod n)
is bijective.

To find x € Z such that x=1 mod 7 and x = 2 mod 9:
We use Euclid to find 7u+ 9v =1 with u =4, v= —3.
We have 7u = 28, which is 0 mod 7 and 1 mod 9;

and 9v = —27, which is 1 mod 7 and 0 mod 9.

Then x=1Xx9v+2 x Tu=29 is 1 mod 7 and 2 mod 9.
The general solution is x = 29 mod 63.
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Application to Euler’'s ¢

For m, n coprime, CRT reduces the study of Z/mnZ to that
of Z/mZ and Z/nZ.

H induces (Z/mnZ)* «— (Z/mZ)* x (Z/nZ)*. Thus
x invertible mod mn <= x invertible mod m and mod n.
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Application to Euler’'s ¢

For m, n coprime, CRT reduces the study of Z/mnZ to that
of Z/mZ and Z/nZ.

H induces (Z/mnZ)* «— (Z/mZ)* x (Z/nZ)*. Thus
x invertible mod mn <= x invertible mod m and mod n.

¢ is (weakly) multiplicative.
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Application to Euler’'s ¢

For m, n coprime, CRT reduces the study of Z/mnZ to that
of Z/mZ and Z/nZ.

H induces (Z/mnZ)* «— (Z/mZ)* x (Z/nZ)*. Thus
x invertible mod mn <= x invertible mod m and mod n.

¢ is (weakly) multiplicative.

Let n=T],p{", with the p; pairwise distinct primes and the
vi> 1. Then

o(n) = [ (i - ,—nH(l——>

i

P prlme
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Application to Euler’'s ¢

Let n =[], p", with the p; pairwise distinct primes and the

i

vi > 1. Then

ot =TT - v =n IT (1-3)-

i pln
p prime

By multiplicativity, ¢([; p{") = [ I #(p/").

And in Z/p"Z, an element is invertible iff. it is coprime to p,
iff. it is coprime to p.

So exactly 1 out of p element is non-invertible.

~ p’~! non-invertibles, and p* — p"~! invertibles. ]
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Additive and multiplicative
order
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Sequences in finite sets

Let S be a finite set, and f: S — S a function. Define a
sequence in S by picking sy € S and defining inductively

Smi1 = f(Sm).

Such a sequence is always ultimately periodic.
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Sequences in finite sets

Let S be a finite set, and f: S — S a function. Define a
sequence in S by picking sy € S and defining inductively
Smi1 = f(Sm).

Such a sequence is always ultimately periodic.

4
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Sequences in finite sets

Let S be a finite set, and f: S — S a function. Define a
sequence in S by picking sy € S and defining inductively
Smi1 = f(Sm).

Such a sequence is always ultimately periodic.

Nicolas Mascot Introduction to number theory



Sequences in finite sets

Let S be a finite set, and f: S — S a function. Define a
sequence in S by picking sy € S and defining inductively
Smi1 = f(Sm).

Such a sequence is always ultimately periodic.
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Sequences in finite sets

Let S be a finite set, and f: S — S a function. Define a
sequence in S by picking sy € S and defining inductively
Smi1 = f(Sm).

Such a sequence is always ultimately periodic.

A
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Sequences in finite sets

Let S be a finite set, and f: S — S a function. Define a
sequence in S by picking sy € S and defining inductively
Smi1 = f(Sm).

Such a sequence is always ultimately periodic.
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Sequences in finite sets

Let S be a finite set, and f: S — S a function. Define a
sequence in S by picking sy € S and defining inductively
Smi1 = f(Sm).

Such a sequence is always ultimately periodic.

Nicolas Mascot Introduction to number theory



Sequences in finite sets

Let S be a finite set, and f: S — S a function. Define a
sequence in S by picking sy € S and defining inductively
Smi1 = f(Sm).

Such a sequence is always ultimately periodic.
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Sequences in finite sets

Let S be a finite set, and f: S — S a function. Define a
sequence in S by picking sy € S and defining inductively
Smi1 = f(Sm).

Such a sequence is always ultimately periodic.
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Sequences in finite sets

Let S be a finite set, and f: S — S a function. Define a
sequence in S by picking sy € S and defining inductively
Smi1 = f(Sm).

Such a sequence is always ultimately periodic.

[ ]

. \ / \

. . / /
Tail of length 2, period of length 5.
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Additive order

Let x € Z/nZ. Define a sequence in Z/nZ by s, = 0 and
Smi1 = Sm + X; thus s,, = mx € Z/nZ for all m.

The additive order of x is

AO(x) = period of sp,.

Take x=4 € Z/6Z. Then
So=0,s51=55+x=4, s5=5+x=2,53=5+x=0
~» AO(4 mod 6) = 3.
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Determination of the additive order

Theorem
For all x € 7./ nZ, the sequence s,, = mx is purely periodic (no
tail), and we have AO(X) = P TETR

Proof.
Let g = ged(x, n). For all i,j € Z~(, we have

X = jx <= ix= jxmod n
< n| (ix—jx) = (i—j)x

n X
= —[(i=J)
g
2% 2 (i-))
ng(gag)zl g
<= i=jmod ﬁ. [
g
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Multiplicative order

Let x € (Z/nZ)*. Define a sequence in (Z/nZ)* by ty =1
and tyy 1 =ty X X; thus t,, = x™ € (Z/nZ)* for all m.

The multiplicative order of x is

MO(x) = period of t,.

Take x=2 € Z/7Z. Then
to=1 =t xx=2, b=t Xxx=4 3=t xx=1

~» MO(2 mod 7) = 3.
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Properties of the multiplicative order

Theorem (Fermat's little theorem)
For all x € (Z/nZ)*, we have x*(" = 1.

Proof.

Lagrange. Alternatively, let (Z/nZ)* = {y1,y2, " ,Ys(n)}- As

X X
x is invertible, the map (Z/nZ)* — (Z/nL) is
y L Xy
(Z/nZ)* — (Z/nZ)*

— X
have (Z/nZ)* = {xy1, X2, - , XVs(n)}. Multiplying yields

bijective with inverse , SO we also

V1Yo« Yon) = XV1Xy2 - XYgp(n) = X yyy - Yo (n)s

and we can simplify by the y; because they are invertible. [

Nicolas Mascot Introduction to number theory



Properties of the multiplicative order

Theorem (Fermat's little theorem)

For all x € (Z/nZ)*, we have x*(" = 1.

Corollary

For all x € (Z/nZ)*, the sequence t,, = X" is purely periodic
(no tail), and we have MO(X) | ¢(n).

Corollary

For all x € Z coprime to n, for all i, j € Z,

i=jmod ¢(n) = ¥ = ¥ mod n.

A\
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Properties of the multiplicative order
Theorem (Fermat's little theorem)

For all x € (Z/nZ)*, we have x*(" = 1.

Corollary

For all x € 7. coprime to n, for all i,j € Z,

i=jmod ¢(n) = ¥ = ¥ mod n.

What is 3532921 mod 107

First, 353 = 3 mod 10, so 353292! = 32021 ;mod 10.
Next, (10) = 10(1 — 1/2)(1 — 1/5) = 4. As
2021 = 1 mod 4, 3?9?! = 3! = 3 mod 10.
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Primitive roots
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Let x € Z and n € N. We say that x is a primitive root mod n
if ged(x, n) =1 and MO(x mod n) = ¢(n).

MO(2 mod 7) = 3 < ¢(7) = 6, so 2 is not a primitive root
mod 7.

In Z/7Z, we have 3° =1, 3! = 3,32 =2, 33 = -1, 3 = -3,
3> = -2, 3%=1. So 3 is a primitive root mod 7.

Counter-example

Primitive roots do not always exist! For instance, every
x € (Z/8Z)* = {£1,+3} satisfies ¥* = 1, so MO(x) | 2,
whereas ¢(8) = 4.

A\
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Discrete logarithm

Definition (Reminder)

Let x € Z and n € N. We say that x is a primitive root mod n
if ged(x, n) =1 and MO(x mod n) = ¢(n).

Let x € (Z/nZ)*. Then MO(x) = #{x", m € Z}, and every
power of x is of the form x™ for some unique m € Z/ MO(x)Z.
In particular, x is a primitive root iff. (Z/nZ)* = {x",m € Z}.
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Discrete logarithm

Let x € (Z/nZ)*. Then MO(x) = #{x", m € Z}, and every
power of x is of the form x™ for some unique m € Z/ MO(x)Z.
In particular, x is a primitive root iff. (Z/nZ)* = {x", m € Z}.

e=invertible, o=non-invertible. ¢(n) = 6.

e« o e MO=3 .:\. MO = 6
Z I/
o ° ¢} ~> No o<—0 o ~ yes
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Discrete logarithm

Let x € (Z/nZ)*. Then MO(x) = #{x", m € Z}, and every
power of x is of the form x™ for some unique m € Z/ MO(x)Z.
In particular, x is a primitive root iff. (Z/nZ)* = {x", m € Z}.

Definition (Discrete logarithm)

Suppose g € (Z/nZ)* is a primitive root. Then every
x € (Z/nZ)* is of the form x = g™ for some unique
m € Z/¢(n)Z, which is denoted by m = log, x € Z/¢(n)Z.
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Discrete logarithm
Definition (Discrete logarithm)

Suppose g € (Z/nZ)* is a primitive root. Then every
x € (Z/nZ)* is of the form x = g™ for some unique
m € Z/$(n)Z, which is denoted by m = log, x € Z/¢(n)Z.

Using the primitive root g =3 € (Z/7Z)*, we have
log (=1 mod 7) = 3 mod 6, because g =—-1mod7,

and indeed
g" = —1mod 7 <= m = 3 mod 6.
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Calculation of MO

Lemma (MO lemma)

Let x € (Z/nZ)*. Then for all m € Z, we have (x")MOX = 1

so MO(x™) | MO(x), and in fact MO(x™) = —gcd(l\r/[nol\/([)g(x))'

Proof.

Recall that for all k € Z, we have x* = 1 <= MO(x) | k.
First, (xm)MOX) = xmMOX) — ((MOMYm — 1m — 1,
Let m € Z, and let g = ged(m, MO(x)); then for all k € Z,
(XM =1 x"=1
<= MO(x) | mk

M
= 0 |Tk
g g
s M(;(X) | k. O
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Calculation of MO

Lemma (MO lemma)

Let x € (Z/nZ)*. Then for all m € Z, we have (x")MOX) = 1

so MO(x™) | MO(x), and in fact MO(x™) = 03

Corollary

Suppose g € (Z/nZ)* is a primitive root. Then for all
X € (Z/HZ)X, ¢(’7)

R AT )

Corollary

If there exist primitive roots in 7Z/nZ, then there are exactly

o(o(n)) of them.
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Primitive roots mod p

Lemma

Let p € N prime, and F(x) = x¥ + ag_1x* 1+ -+ aix+ ap
a polynomial of degree d with coefficients in 7./ pZ.
Then F(x) has at most d roots in 7./ pZ.

Counter-example

The polynomial x> — 1 has degree 2, but all 4 elements of
(Z/8Z)* = {£1,£3} are roots of it.
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Primitive roots mod p

Lemma

Let p € N prime, and F(x) = x¥ + ag_1x* 1+ -+ aix+ ap
a polynomial of degree d with coefficients in 7./ pZ.

Then F(x) has at most d roots in 7./ pZ.

Proof.

We prove by induction on n > 1 that if z,--- , z, are distinct
roots, then F(x) = (x—z;) -+ - (x — z,) G(x).

For n =1, shift variable x=y+ z;: F(x) = F(y+ z1) = yG(y).
And if z,,; is another root of F(x) = (x — zl) - (x = z,) G(x),
then (zp41 — 21)  (Zot1 — 20) G(2011) = G(zp41) =0
because p is prime. [
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Primitive roots mod p

Lemma

Let p € N prime, and F(x) = x¥ + ag_1x* 1+ -+ aix+ ap
a polynomial of degree d with coefficients in 7./ pZ.
Then F(x) has at most d roots in 7./ pZ.

Lemma

For all n € N, we have Zqﬁ(d) =n.

dln

Consider the n fractions 2,4 2 ... =1 When we simplify

n’n’n’

them, we get the % with d | n, ged(x,d) =1, and 0 < x < d.
For each d, there are ¢(d) such fractions. O
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Primitive roots mod p

Lemma

Let p € N prime, and F(x) = x¥ + ag_1x® 1+ -+ + aix+ ap
a polynomial of degree d with coefficients in 7./ pZ.
Then F(x) has at most d roots in Z/pZ.

Lemma

For all n € N, we have Zqﬁ(d) =n.

dln

Theorem

For all p € N prime, there are ¢(p — 1) > 0 primitive roots
in Z/ pZ.

A\
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Primitive roots mod p: proof

Lemma

For all d e N, let
Ya={y € (Z/p2)" | MO(y) = d}, w(d) = #Ya
Then 1 (d) < ¢(d) for all d.

If Yy =10, then ¥(d) = 0 < ¢(d) so OK. By Fermat, this
always happens if dt ¢(p).

Else, let y € Y. Then MO(y) = d, so {y”, m € Z} has d
elements. By MO lemma, they are all roots of x? — 1; thus
{y™, m € Z} = {roots of x* — 1}. In particular, every element
of Yy is a power of y. Therefore

Ya={y" | me Z/dZ, MO(y") = d} ={y" |m € (Z/dZ)"}
by MO lemma, whence ¢ (d) = ¢(d). O
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Primitive roots mod p: proof

For all d € N, let
Yo={y e (Z/p2)" | MO(y) = d}, ¢(d) = #Ys
Then ¥(d) < ¢(d) for all d.

Proof of Theorem
We have

3(p) = #(Z/PL) = Y b(d) < Y é(d) = é(p).

This forces ¥(d) = ¢(d) for all d | ¢(p); in particular
for d = ¢(p) we have ¢ (¢(p)) = d(¢(p)) = d(p—1). B
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Finding primitive roots

Let x € (Z/nZ)*, and let k € N be such that X< = 1. Then
MO(x) = k iff. for all primes p | k, xX/P # 1.

Proof.
We have that MO(x) | k, so

MO(x) < k<= k/ MO(x) > 2

k
<> there is a prime p | MO
X

<= thereis a prime ps.t. MO(x) | —. [

T | x
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Finding primitive roots

Lemma

Let x € (Z/nZ)*, and let k € N be such that xX* = 1. Then
MO(x) = k iff. for all primes p | k, x/P # 1.

What is MO(7 mod 19)?

We have $(19) = 18 = 2 x 32,

We compute in Z/197Z that 7'%/3 = 76 = 1,
so MO(7 mod 19) | 6 =2 x 3.

Next, 7%/3 # 1, so MO(7 mod 19) 1 2,

but 7/2 = 1 so MO(7 mod 19) | 3.

Finally, 73/3 #£ 1, so MO(7 mod 19) { 1; thus

MO(7 mod 19) = 3.
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Finding primitive roots

Let x € (Z/nZ)*, and let k € N be such that x* = 1. Then
MO(x) = k iff. for all primes p | k, xX/P # 1.

Corollary

Let x € (Z/nZ)*. Then x is a primitive root iff. for all
primes p | ¢(n), we have x*(W/P £ 1.

We want to find a primitive root in Z/117Z. We have
¢(11) = 10 = 2 x 5, so the proportion of primitive roots
in (Z/11Z)* is $(10)/10 = (1 — 3)(1 — 1) = 40%.
We try x = 2; as

22 =4 +#1mod 11 and 2° = 32 = —1 # 1 mod 11,
2 is a primitive root.
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