$\begin{array}{l} \mathsf{MAU23101}\\ \mathsf{Introduction \ to \ number \ theory}\\ 2 \ - \ \mathsf{Congruences \ and} \ \mathbb{Z}/n\mathbb{Z} \end{array}$

Nicolas Mascot <u>mascotn@tcd.ie</u> Module web page

Michaelmas 2020–2021 Version: October 15, 2020

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Congruences

Definition

Let $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$. We say that a is congruent to b modulo n, and we write

 $a \equiv b \mod n$,

if n | (a - b).

Example

 $36 \equiv 16 \equiv -4 \mod 10.$

 $a \equiv b \mod 1$ for all $a, b \in \mathbb{Z}$.

The set $\mathbb{Z}/n\mathbb{Z}$

If $a \equiv b \mod n$ and $b \equiv c \mod n$, then $a \equiv c \mod n$, because a - c = (a - b) + (b - c). So if we fix $n \in \mathbb{N}$, we can sort the integers into "bags" of congruence.

Example

For
$$n = 2$$
, we have 2 bags:
{..., -4, -2, 0, 2, 4, ...} and {..., -3, -1, 1, 3, 5, ...}.
For $n = 3$, we have 3 bags:
{..., -6, -3, 0, 3, 6, ...}, {..., -5, -2, 1, 4, 7, ...}, and
{..., -4, -1, 2, 5, 8, ...}.

Definition

The set of these "bags" is called $\mathbb{Z}/n\mathbb{Z}$.

The set $\mathbb{Z}/n\mathbb{Z}$

Let $x \in \mathbb{Z}$, and let x = nq + r be its division by n. Then $x \equiv r \mod n$. Conversely, if $0 \leq x, y < n$, then $x \not\equiv y \mod n$ unless x = y.

Theorem

n

Let $n \in \mathbb{N}$. The set $\mathbb{Z}/n\mathbb{Z}$ has exactly n elements:

$$\overline{0} = \{x \in \mathbb{Z} \mid x \equiv 0 \mod n\} = \{nq, q \in \mathbb{Z}\},\$$

$$\overline{1} = \{x \in \mathbb{Z} \mid x \equiv 1 \mod n\} = \{nq + 1, q \in \mathbb{Z}\},\$$

$$\overline{2} = \{x \in \mathbb{Z} \mid x \equiv 2 \mod n\} = \{nq + 2, q \in \mathbb{Z}\},\$$

$$\vdots$$

$$\overline{-1} = \{x \in \mathbb{Z} \mid x \equiv n - 1 \mod n\} = \{nq + n - 1, q \in \mathbb{Z}\}.$$

The ring $\mathbb{Z}/n\mathbb{Z}$

Operations in $\mathbb{Z}/n\mathbb{Z}$

Fix $n \in \mathbb{N}$, and let $X, Y \in \mathbb{Z}/n\mathbb{Z}$. In order to define X + Y, we take $x \in X$, $y \in Y$, and we say that X + Y is the bag containing x + y. Similarly, XY is the bag containing xy.

Example

Take
$$n = 5$$
, $X = \overline{2} = \{\cdots, -3, 2, 7, \cdots\}$, and $Y = \overline{3} = \{\cdots, -2, 3, 8, \cdots\}$. Then

X + Y = bag containing $2 + 3 = \{\cdots, -5, 0, 5, \cdots\} = \overline{0}$,

XY = bag containing $2 \times 3 = \{\cdots, -4, 1, 6, \cdots\} = \overline{1}$.

Lemma

Let $n \in \mathbb{N}$, and let $a, a', b, b' \in \mathbb{Z}$ be such that $a \equiv a' \mod n$ and $b \equiv b' \mod n$. Then $a + b \equiv a' + b' \mod n$, $a - b \equiv a' - b' \mod n$, and $ab \equiv a'b' \mod n$.

Operations in $\mathbb{Z}/n\mathbb{Z}$

Lemma

Let $n \in \mathbb{N}$, and let $a, a', b, b' \in \mathbb{Z}$ be such that $a \equiv a' \mod n$ and $b \equiv b' \mod n$. Then $a + b \equiv a' + b' \mod n$, $a - b \equiv a' - b' \mod n$, and $ab \equiv a'b' \mod n$.

Proof.

$$a \equiv a' \mod n \text{ means } a' - a = kn \text{ for some } k \in \mathbb{Z};$$

similarly $b' - b = ln$ for some $l \in \mathbb{Z}$. Then
 $(a' + b') - (a + b) = (a' - a) + (b' - b) = kn + ln = (k + l)n,$
 $(a' - b') - (a - b) = (a' - a) - (b' - b) = kn - ln = (k - l)n,$
 $(a'b') - (ab) = a'b' - ab' + ab' - ab$
 $= (a' - a)b' + a(b' - b)$
 $= knb' + aln$
 $= (kb' + al)n.$

The ring $\mathbb{Z}/n\mathbb{Z}$

Computing in $\mathbb{Z}/n\mathbb{Z}$ means that we treat multiples of *n* as 0. So we can replace any integer with its remainder by *n*. And $\bar{x} = \bar{y}$ iff. $x \equiv y \mod n$.

Example

In
$$\mathbb{Z}/12\mathbb{Z}$$
, we have $\overline{7} \times \overline{8} - \overline{9} = \overline{56} - \overline{9} = \overline{8} - \overline{9} = \overline{-1} = \overline{11}$.

In $\mathbb{Z}/13\mathbb{Z}$, we have $\overline{7} \times \overline{8} - \overline{9} = \overline{56} - \overline{9} = \overline{4} - \overline{9} = \overline{-5} = \overline{8}$.

Remark

Although $\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \cdots, \overline{n-1}\}$, computations are easier with a more symmetric choice of representatives. For instance, in $\mathbb{Z}/12\mathbb{Z} = \{\overline{-5}, \overline{-4}, \cdots, \overline{5}, \overline{6}\}$, we have

 $\overline{7} \times \overline{8} - \overline{9} = \overline{-5} \times \overline{-4} + \overline{3} = \overline{20} + \overline{3} = \overline{-4} + \overline{3} = \overline{-1}.$

 $\mathbb{Z}/n\mathbb{Z}$ is a <u>ring</u>: a set in which we can $+, -, \times$. For division, we will see later!

Application to Diophantine equations

Suppose we have a Diophantine equation

$$F(x, y, \cdots) = C$$

where *F* is a polynomial with coefficients in \mathbb{Z} , and $C \in \mathbb{Z}$. If $x = a, y = b, \cdots$ is a solution, then for all $n \in \mathbb{N}$, in $\mathbb{Z}/n\mathbb{Z}$ we have

$$F(\overline{a},\overline{b},\cdots)=\overline{C}.$$

So conversely, if for some $n \in \mathbb{N}$ the equation has no solution in $\mathbb{Z}/n\mathbb{Z}$, then it has no solution in \mathbb{Z} .

The point is that $\mathbb{Z}/n\mathbb{Z}$ is finite, so we only need to check finitely many possibilities for x, y, \cdots to disprove the existence of solutions in \mathbb{Z} !

Example 1: sum of two squares

Does $x^2 + y^2 = 2019$ have integral solutions? Take n = 4: In $\mathbb{Z}/4\mathbb{Z}$, we have

so $\overline{x^2 + y^2} = \overline{x}^2 + \overline{y}^2$ can be either

$$\overline{0} + \overline{0} = \overline{0}$$
, or $\overline{0} + \overline{1} = \overline{1}$, or $\overline{1} + \overline{1} = \overline{2}$.

But $\overline{2019} = \overline{19} = \overline{-1} \notin \{\overline{0}, \overline{1}, \overline{2}\}$, so no solutions in $\mathbb{Z}/4\mathbb{Z}$, so no solutions in \mathbb{Z} either!

Similarly, no solutions to $x^2 + y^2 = 4k - 1$ for any $k \in \mathbb{Z}$.

$$5x^2 - 7y^2 = 4k - 1$$
 either.

In $\mathbb{Z}/9\mathbb{Z}$, we have

So necessarily $\overline{x^3 + y^3 + z^3} \in \{-\overline{3}, -\overline{2}, -\overline{1}, \overline{0}, \overline{1}, \overline{2}, \overline{3}\}$. Therefore, for all $C \in \mathbb{Z}$, if $C \equiv \pm 4 \mod 9$, then the Diophantine equation $x^3 + y^3 + z^3 = C$ has no solutions.

Example: C = 31, C = 32.

Invertible elements in $\mathbb{Z}/n\mathbb{Z}$

Invertible elements in $\mathbb{Z}/n\mathbb{Z}$

Definition

An element $x \in \mathbb{Z}/n\mathbb{Z}$ is <u>invertible</u> if there exists $y \in \mathbb{Z}/n\mathbb{Z}$ such that $xy = \overline{1}$. Such an y is then unique, and is denoted by x^{-1} .

Indeed, if
$$xy = xy' = \overline{1}$$
, then $y = yxy' = y'$.

Example

In $\mathbb{Z}/11\mathbb{Z}$, $\overline{2}$ is invertible, with inverse $\overline{6}$, since $\overline{2} \times \overline{6} = \overline{12} = \overline{1}$. Thus $\overline{2}^{-1} = \overline{6} = -\overline{5}$.

Counter-example

In $\mathbb{Z}/4\mathbb{Z}$, we have $\overline{2}y \in \{\overline{0}, \overline{2}\}$ for all $y \in \mathbb{Z}/4\mathbb{Z}$, so $\overline{2}$ is not invertible.

Invertible elements in $\mathbb{Z}/n\mathbb{Z}$

Definition

An element $x \in \mathbb{Z}/n\mathbb{Z}$ is <u>invertible</u> if there exists $y \in \mathbb{Z}/n\mathbb{Z}$ such that $xy = \overline{1}$. Such an y is then unique, and is denoted by x^{-1} .

Definition (Division in $\mathbb{Z}/n\mathbb{Z}$)

Let $x, y \in \mathbb{Z}/n\mathbb{Z}$. If y is invertible, then we define $x/y = x \times y^{-1}$.

Else, the division x/y is forbidden.

Example

In $\mathbb{Z}/11\mathbb{Z}$, we have $\overline{3}/\overline{2} = \overline{3} \times \overline{2}^{-1} = \overline{3} \times \overline{6} = \overline{18} = \overline{7} = -\overline{4}$.

In $\mathbb{Z}/4\mathbb{Z}$, $\overline{3}/\overline{2}$ makes <u>no sense</u>.

Theorem (Invertibility test)

Let $x \in \mathbb{Z}$ and $n \in \mathbb{N}$. Then \overline{x} is invertible in $\mathbb{Z}/n\mathbb{Z}$ iff. gcd(x, n) = 1.

Proof.

$$\begin{split} \overline{x} \text{ invertible } & \Longleftrightarrow \overline{xy} = \overline{1} \text{ for some } y \in \mathbb{Z} \\ & \Longleftrightarrow xy \equiv 1 \mod n \text{ for some } y \in \mathbb{Z} \\ & \Longleftrightarrow xy = 1 + nk \text{ for some } y, k \in \mathbb{Z} \\ & \Leftrightarrow xy - nk = 1 \text{ for some } y, k \in \mathbb{Z} \\ & \bigoplus_{\text{Bézout}} \gcd(x, n) = 1. \end{split}$$

Proof.

$$\begin{split} \overline{x} \text{ invertible } & \Longleftrightarrow \overline{xy} = \overline{1} \text{ for some } y \in \mathbb{Z} \\ & \Longleftrightarrow xy \equiv 1 \mod n \text{ for some } y \in \mathbb{Z} \\ & \Longleftrightarrow xy = 1 + nk \text{ for some } y, k \in \mathbb{Z} \\ & \Longleftrightarrow xy - nk = 1 \text{ for some } y, k \in \mathbb{Z} \\ & \longleftrightarrow \gcd(x, n) = 1. \end{split}$$

Example

By Euclid's algorithm, we see that gcd(8, 27) = 1, so 8 is invertible mod 27. Working backwards, we find that 8u + 27v = 1 for u = -10, v = 3; so $\overline{8}^{-1} = -\overline{10} = \overline{17}$.

Theorem (Invertibility test)

Let $x \in \mathbb{Z}$ and $n \in \mathbb{N}$. Then \overline{x} is invertible in $\mathbb{Z}/n\mathbb{Z}$ iff.

gcd(x, n) = 1.

Theorem (Simplifiability)

 $x \in \mathbb{Z}/n\mathbb{Z}$ is invertible iff. for all $L, R \in \mathbb{Z}/n\mathbb{Z}$, xL = xR implies L = R.

Proof.

If x is invertible, then xL = xR implies $x^{-1}xL = x^{-1}xR$. Conversely, if xL = xR always implies L = R, then the map $\mathbb{Z}/n\mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z}$ is injective, hence bijective because $y \longmapsto xy$ is injective, hence bijective because $\mathbb{Z}/n\mathbb{Z}$ is finite, hence surjective, so there exists y such that $xy = \overline{1}$.

Theorem (Invertibility test)

Let $x \in \mathbb{Z}$ and $n \in \mathbb{N}$. Then \overline{x} is invertible in $\mathbb{Z}/n\mathbb{Z}$ iff. gcd(x, n) = 1.

Theorem (Simplifiability)

 $x \in \mathbb{Z}/n\mathbb{Z}$ is invertible iff. for all $L, R \in \mathbb{Z}/n\mathbb{Z}$, xL = xR implies L = R.

Example

$$\ln \mathbb{Z}/27\mathbb{Z}, 8x = 5 \iff x = 8^{-1} \times 5 = -10 \times 5 = 4.$$

Counter-example

In $\mathbb{Z}/4\mathbb{Z}$, the solutions to 2x = 0 are x = 0 and x = 2; whereas 2x = 1 has no solutions.

Theorem

Let $n \in \mathbb{N}$. TFAE:

- **(**) Every nonzero $x \in \mathbb{Z}/n\mathbb{Z}$ is invertible,
- If $x, y \in \mathbb{Z}/n\mathbb{Z}$, $xy = \overline{0}$ only if $x = \overline{0}$ or $y = \overline{0}$,

In is prime.

Counter-example

In $\mathbb{Z}/6\mathbb{Z}$, $\overline{2} \neq \overline{0}$ is not invertible, and $\overline{2} \times \overline{3} = \overline{0}$.

Theorem

Let $n \in \mathbb{N}$. TFAE:

- **(**) Every nonzero $x \in \mathbb{Z}/n\mathbb{Z}$ is invertible,

In is prime.

Proof.

(1)
$$\Rightarrow$$
 (2): If $xy = \overline{0}$ and $x \neq \overline{0}$, then $y = x^{-1}xy = x^{-1}\overline{0} = \overline{0}$.
(2) \Rightarrow (3): If $n = ab$, then $\overline{ab} = \overline{n} = \overline{0}$, so \overline{a} or \overline{b} is $\overline{0}$, so $n \mid a$ or $n \mid b$, so $a = n$ or $b = n$.
(3) \Rightarrow (1): If $\overline{a} \neq 0$, then $n \nmid a$, so $gcd(a, n) = 1$ as n is prime.

The group of invertibles and Euler's totient

Proposition

Invertible elements in $\mathbb{Z}/n\mathbb{Z}$ for a group under multiplication, denoted by $(\mathbb{Z}/n\mathbb{Z})^{\times} = \{x \in \mathbb{Z}/n\mathbb{Z} \mid x \text{ invertible}\}.$

In other words, $x, y \in (\mathbb{Z}/n\mathbb{Z})^{\times} \Longrightarrow xy \in (\mathbb{Z}/n\mathbb{Z})^{\times}$.

Definition

Euler's totient function is

$$\phi(\mathbf{n}) = \#(\mathbb{Z}/\mathbf{n}\mathbb{Z})^{\times} = \#\{0 \leqslant \mathbf{x} < \mathbf{n} \mid \gcd(\mathbf{x}, \mathbf{n}) = 1\}.$$

Example

$$(\mathbb{Z}/6\mathbb{Z})^{\times} = \{\overline{1}, -\overline{1}\}$$
, so $\phi(6) = 2$.

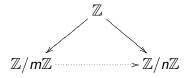
We will see a formula for $\phi(n)$ very soon.

Chinese remainders

Let $n \in \mathbb{N}$. Given $x \in \mathbb{Z}$, we can consider its image in $\mathbb{Z}/n\mathbb{Z}$ \rightsquigarrow reduction map $\mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z}$.

Let $n \in \mathbb{N}$. Given $x \in \mathbb{Z}$, we can consider its image in $\mathbb{Z}/n\mathbb{Z}$ \rightsquigarrow reduction map $\mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z}$.

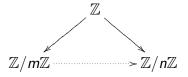
If now $m, n \in \mathbb{N}$, do we have a map such that



commutes?

Let $n \in \mathbb{N}$. Given $x \in \mathbb{Z}$, we can consider its image in $\mathbb{Z}/n\mathbb{Z}$ \rightsquigarrow reduction map $\mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z}$.

If now $m, n \in \mathbb{N}$, do we have a map such that

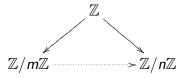


commutes?

Yes iff. for all $x, x' \in \mathbb{Z}$, $x \equiv x' \mod m \Longrightarrow x \equiv x' \mod n$.

Let $n \in \mathbb{N}$. Given $x \in \mathbb{Z}$, we can consider its image in $\mathbb{Z}/n\mathbb{Z}$ \rightsquigarrow reduction map $\mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z}$.

If now $m, n \in \mathbb{N}$, do we have a map such that



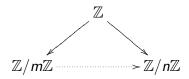
commutes?

Yes iff. for all $x, x' \in \mathbb{Z}$, $x \equiv x' \mod m \Longrightarrow x \equiv x' \mod n$.

In particular, we must have $m \equiv 0 \mod n$, i.e. $n \mid m$. Conversely, if $n \mid m$, then

 $x \equiv x' \mod m \iff m \mid (x-x') \Longrightarrow n \mid (x-x') \iff x \equiv x' \mod n.$

If now $m, n \in \mathbb{N}$, do we have a map such that



commutes?

Theorem

We have a reduction map $\mathbb{Z}/m\mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z}$ iff. $n \mid m$.

Example

We have a reduction map from $\mathbb{Z}/6\mathbb{Z}$ to $\mathbb{Z}/2\mathbb{Z}$, e.g. $5 \mod 6 \mapsto 1 \mod 2$.

But we do not have a reduction map from $\mathbb{Z}/6\mathbb{Z}$ to $\mathbb{Z}/4\mathbb{Z}$. Indeed, $5 \mod 6$ could be $1 \mod 4$, but also $3 \mod 4$.

The Chinese remainders problem

Let now $m, n \in \mathbb{N}$. Given $y, z \in \mathbb{Z}$, can we find $x \in \mathbb{Z}$ such that $\begin{cases}
x \equiv y \mod m, \\
x \equiv z \mod n?
\end{cases}$

Example

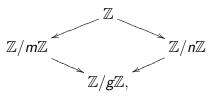
Find $x \in \mathbb{Z}$ such that $x \equiv 1 \mod 7$ and $x \equiv 2 \mod 9$.

The Chinese remainders problem

Let now $m, n \in \mathbb{N}$. Given $y, z \in \mathbb{Z}$, can we find $x \in \mathbb{Z}$ such that

$$\begin{cases} x \equiv y \mod m, \\ x \equiv z \mod n ? \end{cases}$$

Not always! Let g = gcd(m, n). Then we have reduction maps



so no solution if y and z do not have the same image in $\mathbb{Z}/g\mathbb{Z}$.

Example

There is no $x \in \mathbb{Z}$ such that $x \equiv 5 \mod 6$ and $x \equiv 2 \mod 4$.

 \rightsquigarrow we will suppose that gcd(m, n) = 1 from now on.

Theorem (CRT)

F

Let $m, n \in \mathbb{N}$ be coprime. Then the map

$$\mathsf{P}: \begin{array}{ccc} \mathbb{Z}/mn\mathbb{Z} & \longrightarrow & (\mathbb{Z}/m\mathbb{Z}) \times (\mathbb{Z}/n\mathbb{Z}) \\ (x \bmod mn) & \longmapsto & (x \bmod m, x \bmod n) \end{array}$$

is bijective.

Proof.

We construct its inverse. Since *m* and *n* are coprime, there exist $u, v \in \mathbb{Z}$ such that mu + nv = 1. Then #(mu) = (0, 1) and #(nv) = (1, 0). Thus for all $y, z \in \mathbb{Z}$, we have #(ynv + zmu) = (y, z), so $(\mathbb{Z}/m\mathbb{Z}) \times (\mathbb{Z}/n\mathbb{Z}) \longrightarrow \mathbb{Z}/mn\mathbb{Z}$ $(y \mod m, z \mod n) \longmapsto ynv + zmu \mod mn$ is an inverse of #.

Theorem (CRT)

中

Let $m, n \in \mathbb{N}$ be coprime. Then the map

$$: \begin{array}{ccc} \mathbb{Z}/mn\mathbb{Z} & \longrightarrow & (\mathbb{Z}/m\mathbb{Z}) \times (\mathbb{Z}/n\mathbb{Z}) \\ (x \bmod mn) & \longmapsto & (x \bmod m, x \bmod n) \end{array}$$

is bijective.

Example

To find $x \in \mathbb{Z}$ such that $x \equiv 1 \mod 7$ and $x \equiv 2 \mod 9$: We use Euclid to find 7u + 9v = 1 with u = 4, v = -3. We have 7u = 28, which is $0 \mod 7$ and $1 \mod 9$; and 9v = -27, which is $1 \mod 7$ and $0 \mod 9$. Then $x = 1 \times 9v + 2 \times 7u = 29$ is $1 \mod 7$ and $2 \mod 9$. The general solution is $x \equiv 29 \mod 63$.

Application to Euler's ϕ

For m, n coprime, CRT reduces the study of $\mathbb{Z}/m\mathbb{Z}$ to that of $\mathbb{Z}/m\mathbb{Z}$ and $\mathbb{Z}/n\mathbb{Z}$.

Example

† induces $(\mathbb{Z}/mn\mathbb{Z})^{\times} \longleftrightarrow (\mathbb{Z}/m\mathbb{Z})^{\times} \times (\mathbb{Z}/n\mathbb{Z})^{\times}$. Thus *x* invertible mod *mn* \iff *x* invertible mod *m* and mod *n*.

Application to Euler's ϕ

For m, n coprime, CRT reduces the study of $\mathbb{Z}/m\mathbb{Z}$ to that of $\mathbb{Z}/m\mathbb{Z}$ and $\mathbb{Z}/n\mathbb{Z}$.

Example

† induces
$$(\mathbb{Z}/mn\mathbb{Z})^{\times} \longleftrightarrow (\mathbb{Z}/m\mathbb{Z})^{\times} \times (\mathbb{Z}/n\mathbb{Z})^{\times}$$
. Thus
x invertible mod $mn \iff x$ invertible mod *m* and mod *n*.

Corollary

 ϕ is (weakly) multiplicative.

Application to Euler's ϕ

For m, n coprime, CRT reduces the study of $\mathbb{Z}/m\mathbb{Z}$ to that of $\mathbb{Z}/m\mathbb{Z}$ and $\mathbb{Z}/n\mathbb{Z}$.

Example

† induces
$$(\mathbb{Z}/mn\mathbb{Z})^{\times} \longleftrightarrow (\mathbb{Z}/m\mathbb{Z})^{\times} \times (\mathbb{Z}/n\mathbb{Z})^{\times}$$
. Thus
x invertible mod $mn \iff x$ invertible mod *m* and mod *n*.

Corollary

 ϕ is (weakly) multiplicative.

Theorem

Let $n = \prod_{i} p_{i}^{v_{i}}$, with the p_{i} pairwise distinct primes and the $v_{i} \ge 1$. Then $\phi(n) = \prod_{i} (p_{i} - 1) p_{i}^{v_{i} - 1} = n \prod_{\substack{p \mid n \\ p \text{ prime}}} \left(1 - \frac{1}{p}\right).$

Application to Euler's ϕ

Theorem

Let
$$n = \prod_{i} p_{i}^{v_{i}}$$
, with the p_{i} pairwise distinct primes and the $v_{i} \ge 1$. Then

$$\phi(n) = \prod_{i} (p_{i} - 1) p_{i}^{v_{i} - 1} = n \prod_{\substack{p \mid n \\ p \text{ prime}}} \left(1 - \frac{1}{p}\right).$$

Proof.

By multiplicativity, $\phi(\prod_i p_i^{v_i}) = \prod_i \phi(p_i^{v_i})$. And in $\mathbb{Z}/p^v\mathbb{Z}$, an element is invertible iff. it is coprime to p^v , iff. it is coprime to p. So exactly 1 out of p element is non-invertible. $\rightsquigarrow p^{v-1}$ non-invertibles, and $p^v - p^{v-1}$ invertibles.

Additive and multiplicative order

Let S be a finite set, and $f: S \longrightarrow S$ a function. Define a sequence in \overline{S} by picking $s_0 \in S$ and defining inductively $s_{m+1} = f(s_m)$.

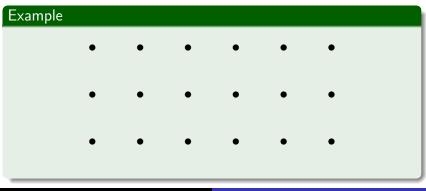
Theorem

Such a sequence is always ultimately periodic.

Let S be a finite set, and $f: S \longrightarrow S$ a function. Define a sequence in S by picking $s_0 \in S$ and defining inductively $s_{m+1} = f(s_m)$.

Theorem

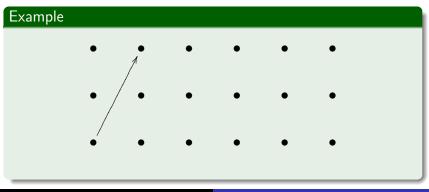
Such a sequence is always ultimately periodic.



Let S be a finite set, and $f: S \longrightarrow S$ a function. Define a sequence in S by picking $s_0 \in S$ and defining inductively $s_{m+1} = f(s_m)$.

Theorem

Such a sequence is always ultimately periodic.

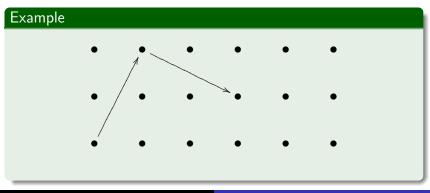


Nicolas Mascot Introduction to number theory

Let S be a finite set, and $f: S \longrightarrow S$ a function. Define a sequence in S by picking $s_0 \in S$ and defining inductively $s_{m+1} = f(s_m)$.

Theorem

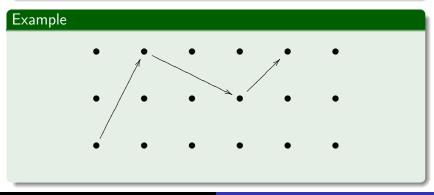
Such a sequence is always ultimately periodic.



Let S be a finite set, and $f: S \longrightarrow S$ a function. Define a sequence in S by picking $s_0 \in S$ and defining inductively $s_{m+1} = f(s_m)$.

Theorem

Such a sequence is always ultimately periodic.

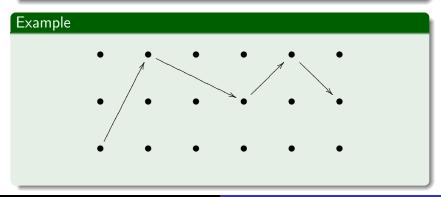


Nicolas Mascot Introduction to number theory

Let S be a finite set, and $f: S \longrightarrow S$ a function. Define a sequence in S by picking $s_0 \in S$ and defining inductively $s_{m+1} = f(s_m)$.

Theorem

Such a sequence is always ultimately periodic.

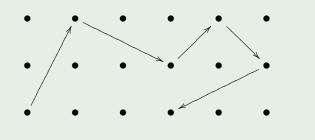


Nicolas Mascot Introduction to number theory

Let S be a finite set, and $f: S \longrightarrow S$ a function. Define a sequence in S by picking $s_0 \in S$ and defining inductively $s_{m+1} = f(s_m)$.

Theorem

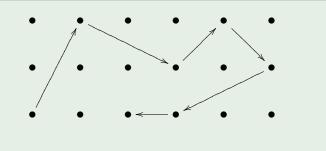
Such a sequence is always ultimately periodic.



Let S be a finite set, and $f: S \longrightarrow S$ a function. Define a sequence in S by picking $s_0 \in S$ and defining inductively $s_{m+1} = f(s_m)$.

Theorem

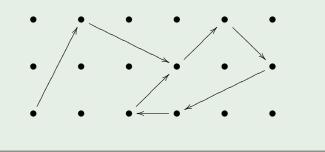
Such a sequence is always ultimately periodic.



Let S be a finite set, and $f: S \longrightarrow S$ a function. Define a sequence in S by picking $s_0 \in S$ and defining inductively $s_{m+1} = f(s_m)$.

Theorem

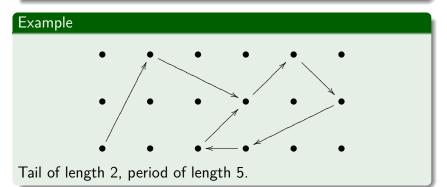
Such a sequence is always ultimately periodic.



Let S be a finite set, and $f: S \longrightarrow S$ a function. Define a sequence in S by picking $s_0 \in S$ and defining inductively $s_{m+1} = f(s_m)$.

Theorem

Such a sequence is always ultimately periodic.



Let $x \in \mathbb{Z}/n\mathbb{Z}$. Define a sequence in $\mathbb{Z}/n\mathbb{Z}$ by $s_0 = 0$ and $s_{m+1} = s_m + x$; thus $s_m = mx \in \mathbb{Z}/n\mathbb{Z}$ for all m.

Definition

The additive order of x is

$$AO(x) = period of s_m.$$

Example

Take $x = 4 \in \mathbb{Z}/6\mathbb{Z}$. Then $s_0 = 0$, $s_1 = s_0 + x = 4$, $s_2 = s_1 + x = 2$, $s_3 = s_2 + x = 0$ $\rightsquigarrow AO(4 \mod 6) = 3$.

Determination of the additive order

Theorem

For all $\overline{x} \in \mathbb{Z}/n\mathbb{Z}$, the sequence $s_m = m\overline{x}$ is <u>purely</u> periodic (no tail), and we have $AO(\overline{x}) = \frac{n}{\gcd(x,n)}$.

Proof.

Let g = gcd(x, n). For all $i, j \in \mathbb{Z}_{\geq 0}$, we have

$$\begin{split} i \overline{x} &= j \overline{x} \Longleftrightarrow i x \equiv j x \bmod n \\ & \iff n \mid (i x - j x) = (i - j) x \\ & \iff \frac{n}{g} \mid (i - j) \frac{x}{g} \\ & \underset{\gcd(\frac{n}{g}, \frac{x}{g}) = 1}{\overset{Gauss}{g}} \frac{n}{g} \mid (i - j) \\ & \iff i \equiv j \bmod \frac{n}{g}. \end{split}$$

Multiplicative order

Let $x \in (\mathbb{Z}/n\mathbb{Z})^{\times}$. Define a sequence in $(\mathbb{Z}/n\mathbb{Z})^{\times}$ by $t_0 = 1$ and $t_{m+1} = t_m \times x$; thus $t_m = x^m \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ for all m.

Definition

The multiplicative order of x is

$$MO(x) = period of t_m.$$

Example

Take $x = 2 \in \mathbb{Z}/7\mathbb{Z}$. Then $t_0 = 1, t_1 = t_0 \times x = 2, t_2 = t_1 \times x = 4, t_3 = t_2 \times x = 1$ $\rightsquigarrow MO(2 \mod 7) = 3.$

Properties of the multiplicative order

Theorem (Fermat's little theorem)

For all $x \in (\mathbb{Z}/n\mathbb{Z})^{\times}$, we have $x^{\phi(n)} = 1$.

Proof.

Lagrange. Alternatively, let $(\mathbb{Z}/n\mathbb{Z})^{\times} = \{y_1, y_2, \cdots, y_{\phi(n)}\}$. As x is invertible, the map $(\mathbb{Z}/n\mathbb{Z})^{\times} \longrightarrow (\mathbb{Z}/n\mathbb{Z})^{\times}$ is bijective with inverse $(\mathbb{Z}/n\mathbb{Z})^{\times} \longrightarrow (\mathbb{Z}/n\mathbb{Z})^{\times}$ $y \longmapsto x^{-1}y$, so we also have $(\mathbb{Z}/n\mathbb{Z})^{\times} = \{xy_1, xy_2, \cdots, xy_{\phi(n)}\}$. Multiplying yields $y_1y_2 \cdots y_{\phi(n)} = xy_1xy_2 \cdots xy_{\phi(n)} = x^{\phi(n)}y_1y_2 \cdots y_{\phi(n)}$, and we can simplify by the y_i because they are invertible.

Properties of the multiplicative order

Theorem (Fermat's little theorem)

For all
$$x \in (\mathbb{Z}/n\mathbb{Z})^{\times}$$
, we have $x^{\phi(n)} = 1$.

Corollary

For all $\overline{x} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$, the sequence $t_m = \overline{x}^m$ is <u>purely</u> periodic (no tail), and we have $MO(\overline{x}) \mid \phi(n)$.

Corollary

For all $x \in \mathbb{Z}$ coprime to n, for all $i, j \in \mathbb{Z}$,

$$i \equiv j \mod \phi(\mathbf{n}) \Longrightarrow \mathbf{x}^i \equiv \mathbf{x}^j \mod \mathbf{n}.$$

Properties of the multiplicative order

Theorem (Fermat's little theorem)

For all $x \in (\mathbb{Z}/n\mathbb{Z})^{\times}$, we have $x^{\phi(n)} = 1$.

Corollary

For all $x \in \mathbb{Z}$ coprime to n, for all $i, j \in \mathbb{Z}$,

$$i \equiv j \mod \phi(n) \Longrightarrow x^i \equiv x^j \mod n.$$

Example

What is $353^{2021} \mod 10$? First, $353 \equiv 3 \mod 10$, so $353^{2021} \equiv 3^{2021} \mod 10$. Next, $\phi(10) = 10(1 - 1/2)(1 - 1/5) = 4$. As $2021 \equiv 1 \mod 4$, $3^{2021} \equiv 3^1 = 3 \mod 10$.

Primitive roots

Primitive roots

Definition

Let $x \in \mathbb{Z}$ and $n \in \mathbb{N}$. We say that x is a <u>primitive root</u> mod n if gcd(x, n) = 1 and $MO(x \mod n) = \phi(n)$.

Example

 $MO(2 \mod 7) = 3 < \phi(7) = 6$, so 2 is not a primitive root mod 7. In $\mathbb{Z}/7\mathbb{Z}$, we have $3^0 = 1$, $3^1 = 3$, $3^2 = 2$, $3^3 = -1$, $3^4 = -3$, $3^5 = -2$, $3^6 = 1$. So 3 is a primitive root mod 7.

Counter-example

Primitive roots do not always exist! For instance, every $x \in (\mathbb{Z}/8\mathbb{Z})^{\times} = \{\pm 1, \pm 3\}$ satisfies $x^2 = 1$, so $MO(x) \mid 2$, whereas $\phi(8) = 4$.

Definition (Reminder)

Let $x \in \mathbb{Z}$ and $n \in \mathbb{N}$. We say that x is a <u>primitive root</u> mod n if gcd(x, n) = 1 and $MO(x \mod n) = \phi(n)$.

Remark

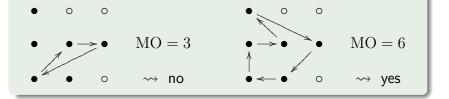
Let $x \in (\mathbb{Z}/n\mathbb{Z})^{\times}$. Then $MO(x) = \#\{x^m, m \in \mathbb{Z}\}$, and every power of x is of the form x^m for some unique $m \in \mathbb{Z}/MO(x)\mathbb{Z}$. In particular, x is a primitive root iff. $(\mathbb{Z}/n\mathbb{Z})^{\times} = \{x^m, m \in \mathbb{Z}\}$.

Discrete logarithm

Remark

Let $x \in (\mathbb{Z}/n\mathbb{Z})^{\times}$. Then $MO(x) = \#\{x^m, m \in \mathbb{Z}\}$, and every power of x is of the form x^m for some unique $m \in \mathbb{Z}/MO(x)\mathbb{Z}$. In particular, x is a primitive root iff. $(\mathbb{Z}/n\mathbb{Z})^{\times} = \{x^m, m \in \mathbb{Z}\}$.

•=invertible,
$$\circ$$
=non-invertible. $\phi(n) = 6$.



Remark

Let $x \in (\mathbb{Z}/n\mathbb{Z})^{\times}$. Then $MO(x) = \#\{x^m, m \in \mathbb{Z}\}$, and every power of x is of the form x^m for some unique $m \in \mathbb{Z}/MO(x)\mathbb{Z}$. In particular, x is a primitive root iff. $(\mathbb{Z}/n\mathbb{Z})^{\times} = \{x^m, m \in \mathbb{Z}\}$.

Definition (Discrete logarithm)

Suppose $g \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ is a primitive root. Then every $x \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ is of the form $x = g^m$ for some unique $m \in \mathbb{Z}/\phi(n)\mathbb{Z}$, which is denoted by $m = \log_g x \in \mathbb{Z}/\phi(n)\mathbb{Z}$.

Definition (Discrete logarithm)

Suppose $g \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ is a primitive root. Then every $x \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ is of the form $x = g^m$ for some unique $m \in \mathbb{Z}/\phi(n)\mathbb{Z}$, which is denoted by $m = \log_g x \in \mathbb{Z}/\phi(n)\mathbb{Z}$.

Example

Using the primitive root $g = 3 \in (\mathbb{Z}/7\mathbb{Z})^{\times}$, we have

$$\log_{\mathbf{g}}(-1 \mod 7) = 3 \mod 6, \text{ because } \mathbf{g}^3 = -1 \mod 7,$$

and indeed

$$g^m = -1 \mod 7 \iff m \equiv 3 \mod 6.$$

Calculation of MO

Lemma (MO lemma)

Let $x \in (\mathbb{Z}/n\mathbb{Z})^{\times}$. Then for all $m \in \mathbb{Z}$, we have $(x^m)^{MO(x)} = 1$ so $MO(x^m) \mid MO(x)$, and in fact $MO(x^m) = \frac{MO(x)}{\gcd(m, MO(x))}$.

Proof.

Recall that for all $k \in \mathbb{Z}$, we have $x^k = 1 \iff MO(x) \mid k$. First, $(x^m)^{MO(x)} = x^{mMO(x)} = (x^{MO(x)})^m = 1^m = 1.$ Let $m \in \mathbb{Z}$, and let $g = \operatorname{gcd}(m, \operatorname{MO}(x))$; then for all $k \in \mathbb{Z}$, $(\mathbf{x}^m)^k = 1 \iff \mathbf{x}^{mk} = 1$ $\iff MO(x) \mid mk$ $\iff \frac{\mathrm{MO}(x)}{g} \mid \frac{m}{g}k$ $\stackrel{\text{Gauss}}{\longleftrightarrow} \frac{\mathrm{MO}(x)}{k} \mid k.$

Calculation of MO

Lemma (MO lemma)

Let $x \in (\mathbb{Z}/n\mathbb{Z})^{\times}$. Then for all $m \in \mathbb{Z}$, we have $(x^m)^{MO(x)} = 1$ so $MO(x^m) \mid MO(x)$, and in fact $MO(x^m) = \frac{MO(x)}{\gcd(m, MO(x))}$.

Corollary

Suppose
$$g \in (\mathbb{Z}/n\mathbb{Z})^{\times}$$
 is a primitive root. Then for all $x \in (\mathbb{Z}/n\mathbb{Z})^{\times}$,
 $MO(x) = \frac{\phi(n)}{\gcd(\phi(n), \log_g x)}.$

Corollary

If there exist primitive roots in $\mathbb{Z}/n\mathbb{Z}$, then there are exactly $\phi(\phi(n))$ of them.

Primitive roots mod p

Lemma

Let $p \in \mathbb{N}$ prime, and $F(x) = x^d + a_{d-1}x^{d-1} + \cdots + a_1x + a_0$ a polynomial of degree d with coefficients in $\mathbb{Z}/p\mathbb{Z}$. Then F(x) has at most d roots in $\mathbb{Z}/p\mathbb{Z}$.

Counter-example

The polynomial $x^2 - 1$ has degree 2, but all 4 elements of $(\mathbb{Z}/8\mathbb{Z})^{\times} = \{\pm 1, \pm 3\}$ are roots of it.

Primitive roots mod p

Lemma

Let $p \in \mathbb{N}$ prime, and $F(x) = x^d + a_{d-1}x^{d-1} + \cdots + a_1x + a_0$ a polynomial of degree d with coefficients in $\mathbb{Z}/p\mathbb{Z}$. Then F(x) has at most d roots in $\mathbb{Z}/p\mathbb{Z}$.

Proof.

We prove by induction on $n \ge 1$ that if z_1, \dots, z_n are distinct roots, then $F(x) = (x - z_1) \cdots (x - z_n) G(x)$. For n = 1, shift variable $x = y + z_1$: $F(x) = F(y + z_1) = yG(y)$. And if z_{n+1} is another root of $F(x) = (x - z_1) \cdots (x - z_n)G(x)$, then $(z_{n+1} - z_1) \cdots (z_{n+1} - z_n)G(z_{n+1}) = 0$, so $G(z_{n+1}) = 0$ because p is prime.

Primitive roots mod p

Lemma

Let $p \in \mathbb{N}$ prime, and $F(x) = x^d + a_{d-1}x^{d-1} + \cdots + a_1x + a_0$ a polynomial of degree d with coefficients in $\mathbb{Z}/p\mathbb{Z}$. Then F(x) has at most d roots in $\mathbb{Z}/p\mathbb{Z}$.

Lemma

For all
$$n \in \mathbb{N}$$
, we have $\sum_{d|n} \phi(d) = n$.

Proof.

Consider the *n* fractions $\frac{0}{n}, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}$. When we simplify them, we get the $\frac{x}{d}$ with $d \mid n$, gcd(x, d) = 1, and $0 \leq x < d$. For each *d*, there are $\phi(d)$ such fractions.

Lemma

Let $p \in \mathbb{N}$ prime, and $F(x) = x^d + a_{d-1}x^{d-1} + \cdots + a_1x + a_0$ a polynomial of degree d with coefficients in $\mathbb{Z}/p\mathbb{Z}$. Then F(x) has at most d roots in $\mathbb{Z}/p\mathbb{Z}$.

Lemma

For all
$$n \in \mathbb{N}$$
, we have $\sum_{d|n} \phi(d) = n$.

Theorem

For all $p \in \mathbb{N}$ prime, there are $\phi(p-1) > 0$ primitive roots in $\mathbb{Z}/p\mathbb{Z}$.

Primitive roots mod *p*: proof

Lemma

For all $d \in \mathbb{N}$, let $Y_d = \{y \in (\mathbb{Z}/p\mathbb{Z})^{\times} \mid MO(y) = d\}, \quad \psi(d) = \#Y_d.$ Then $\psi(d) \leq \phi(d)$ for all d.

Proof.

If $Y_d = \emptyset$, then $\psi(d) = 0 < \phi(d)$ so OK. By Fermat, this always happens if $d \nmid \phi(p)$. Else, let $y \in Y_d$. Then MO(y) = d, so $\{y^m, m \in \mathbb{Z}\}$ has delements. By MO lemma, they are all roots of $x^d - 1$; thus $\{y^m, m \in \mathbb{Z}\} = \{\text{roots of } x^d - 1\}$. In particular, every element of Y_d is a power of y. Therefore

 $Y_d = \{y^m \mid m \in \mathbb{Z}/d\mathbb{Z}, \text{ MO}(y^m) = d\} = \{y^m \mid m \in (\mathbb{Z}/d\mathbb{Z})^{\times}\}$ by MO lemma, whence $\psi(d) = \phi(d)$.

Primitive roots mod p: proof

Lemma

For all $d \in \mathbb{N}$, let $Y_d = \{y \in (\mathbb{Z}/p\mathbb{Z})^{\times} \mid MO(y) = d\}, \quad \psi(d) = \#Y_d.$ Then $\psi(d) \leq \phi(d)$ for all d.

Proof of Theorem.

We have

$$\phi(\mathbf{p}) = \#(\mathbb{Z}/\mathbf{p}\mathbb{Z})^{\times} = \sum_{\mathbf{d}|\phi(\mathbf{p})} \psi(\mathbf{d}) \leqslant \sum_{\mathbf{d}|\phi(\mathbf{p})} \phi(\mathbf{d}) = \phi(\mathbf{p}).$$

This forces $\psi(d) = \phi(d)$ for all $d \mid \phi(p)$; in particular for $d = \phi(p)$ we have $\psi(\phi(p)) = \phi(\phi(p)) = \phi(p-1)$.

Finding primitive roots

Lemma

Let $x \in (\mathbb{Z}/n\mathbb{Z})^{\times}$, and let $k \in \mathbb{N}$ be such that $x^k = 1$. Then MO(x) = k iff. for all primes $p \mid k, x^{k/p} \neq 1$.

Proof.

We have that
$$MO(x) \mid k$$
, so
 $MO(x) < k \iff k/MO(x) \ge 2$
 \iff there is a prime $p \mid \frac{k}{MO(x)}$
 \iff there is a prime p s.t. $MO(x) \mid \frac{k}{p}$.

Finding primitive roots

Lemma

Let $x \in (\mathbb{Z}/n\mathbb{Z})^{\times}$, and let $k \in \mathbb{N}$ be such that $x^k = 1$. Then MO(x) = k iff. for all primes $p \mid k, x^{k/p} \neq 1$.

Example

What is MO(7 mod 19)? We have $\phi(19) = 18 = 2 \times 3^2$. We compute in $\mathbb{Z}/19\mathbb{Z}$ that $7^{18/3} = 7^6 = 1$, so MO(7 mod 19) | $6 = 2 \times 3$. Next, $7^{6/3} \neq 1$, so MO(7 mod 19) | 2, but $7^{6/2} = 1$ so MO(7 mod 19) | 3. Finally, $7^{3/3} \neq 1$, so MO(7 mod 19) | 1; thus

 $MO(7 \mod 19) = 3.$

Finding primitive roots

Lemma

Let $x \in (\mathbb{Z}/n\mathbb{Z})^{\times}$, and let $k \in \mathbb{N}$ be such that $x^k = 1$. Then MO(x) = k iff. for all primes $p \mid k, x^{k/p} \neq 1$.

Corollary

Let $x \in (\mathbb{Z}/n\mathbb{Z})^{\times}$. Then x is a primitive root iff. for all primes $p \mid \phi(n)$, we have $x^{\phi(n)/p} \neq 1$.

Example

We want to find a primitive root in $\mathbb{Z}/11\mathbb{Z}$. We have $\phi(11) = 10 = 2 \times 5$, so the proportion of primitive roots in $(\mathbb{Z}/11\mathbb{Z})^{\times}$ is $\phi(10)/10 = (1 - \frac{1}{2})(1 - \frac{1}{5}) = 40\%$. We try x = 2; as $2^2 = 4 \neq 1 \mod 11$ and $2^5 = 32 = -1 \neq 1 \mod 11$, 2 is a primitive root.