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Congruences

Definition
Let n ∈ N and a, b ∈ Z. We say that
a is congruent to b modulo n, and we write

a ≡ b mod n,

if n | (a− b).

Example
36 ≡ 16 ≡ −4 mod 10.
a ≡ b mod 1 for all a, b ∈ Z.
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The set Z/nZ
If a ≡ b mod n and b ≡ c mod n, then a ≡ c mod n, because
a− c = (a− b) + (b− c).
So if we fix n ∈ N, we can sort the integers into “bags” of
congruence.
Example
For n = 2, we have 2 bags:
{· · · ,−4,−2, 0, 2, 4, · · · } and {· · · ,−3,−1, 1, 3, 5, · · · }.

For n = 3, we have 3 bags:
{· · · ,−6,−3, 0, 3, 6, · · · }, {· · · ,−5,−2, 1, 4, 7, · · · }, and
{· · · ,−4,−1, 2, 5, 8, · · · }.

Definition
The set of these “bags” is called Z/nZ.
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The set Z/nZ

Let x ∈ Z, and let x = nq + r be its division by n. Then
x ≡ r mod n.
Conversely, if 0 ⩽ x, y < n, then x 6≡ y mod n unless x = y.
Theorem
Let n ∈ N. The set Z/nZ has exactly n elements:

0 = {x ∈ Z | x ≡ 0 mod n} = {nq, q ∈ Z},
1 = {x ∈ Z | x ≡ 1 mod n} = {nq + 1, q ∈ Z},
2 = {x ∈ Z | x ≡ 2 mod n} = {nq + 2, q ∈ Z},
...

n− 1 = {x ∈ Z | x ≡ n− 1 mod n} = {nq + n− 1, q ∈ Z}.
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The ring Z/nZ
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Operations in Z/nZ
Fix n ∈ N, and let X,Y ∈ Z/nZ. In order to define X + Y, we
take x ∈ X, y ∈ Y, and we say that X + Y is the bag
containing x + y. Similarly, XY is the bag containing xy.
Example
Take n = 5, X = 2 = {· · · ,−3, 2, 7, · · · }, and
Y = 3 = {· · · ,−2, 3, 8, · · · }. Then

X + Y = bag containing 2 + 3 = {· · · ,−5, 0, 5, · · · } = 0,

XY = bag containing 2× 3 = {· · · ,−4, 1, 6, · · · } = 1.

Lemma
Let n ∈ N, and let a, a′, b, b′ ∈ Z be such that a ≡ a′ mod n
and b ≡ b′ mod n. Then a + b ≡ a′ + b′ mod n,
a− b ≡ a′ − b′ mod n, and ab ≡ a′b′ mod n.
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Operations in Z/nZ
Lemma
Let n ∈ N, and let a, a′, b, b′ ∈ Z be such that a ≡ a′ mod n
and b ≡ b′ mod n. Then a + b ≡ a′ + b′ mod n,
a− b ≡ a′ − b′ mod n, and ab ≡ a′b′ mod n.

Proof.
a ≡ a′ mod n means a′ − a = kn for some k ∈ Z;
similarly b′ − b = ln for some l ∈ Z. Then
(a′ + b′)− (a + b) = (a′ − a) + (b′ − b) = kn + ln = (k + l)n,
(a′ − b′)− (a− b) = (a′ − a)− (b′ − b) = kn− ln = (k− l)n,

(a′b′)− (ab) = a′b′ − ab′ + ab′ − ab
= (a′ − a)b′ + a(b′ − b)
= knb′ + aln
= (kb′ + al)n.
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The ring Z/nZ
Computing in Z/nZ means that we treat multiples of n as 0.
So we can replace any integer with its remainder by n. And
x = y iff. x ≡ y mod n.
Example
In Z/12Z, we have 7× 8− 9 = 56− 9 = 8− 9 = −1 = 11.

In Z/13Z, we have 7× 8− 9 = 56− 9 = 4− 9 = −5 = 8.

Remark
Although Z/nZ = {0, 1, 2, · · · , n− 1}, computations are
easier with a more symmetric choice of representatives. For
instance, in Z/12Z = {−5,−4, · · · , 5, 6}, we have

7× 8− 9 = −5×−4 + 3 = 20 + 3 = −4 + 3 = −1.

Z/nZ is a ring: a set in which we can +,−,×.
For division, we will see later!
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Application to Diophantine
equations
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Idea

Suppose we have a Diophantine equation

F(x, y, · · · ) = C

where F is a polynomial with coefficients in Z, and C ∈ Z.
If x = a, y = b, · · · is a solution, then for all n ∈ N, in Z/nZ
we have

F(a, b, · · · ) = C.
So conversely, if for some n ∈ N the equation has no solution
in Z/nZ, then it has no solution in Z.

The point is that Z/nZ is finite, so we only need to check
finitely many possibilities for x, y, · · · to disprove the existence
of solutions in Z!
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Example 1: sum of two squares
Does x2 + y2 = 2019 have integral solutions?
Take n = 4: In Z/4Z, we have

x −1 0 1 2

x2 1 0 1 0

so x2 + y2 = x2 + y2 can be either

0 + 0 = 0, or 0 + 1 = 1, or 1 + 1 = 2.

But 2019 = 19 = −1 6∈ {0, 1, 2}, so no solutions in Z/4Z, so
no solutions in Z either!

Similarly, no solutions to x2 + y2 = 4k− 1 for any k ∈ Z.

5x2 − 7y2 = 4k− 1 either.
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Example 2: sum of three cubes

In Z/9Z, we have

x −4 −3 −2 −1 0 1 2 3 4

x3 −1 0 1 −1 0 1 −1 0 1.

So necessarily x3 + y3 + z3 ∈ {−3,−2,−1, 0, 1, 2, 3}.
Therefore, for all C ∈ Z, if C ≡ ±4 mod 9, then the
Diophantine equation x3 + y3 + z3 = C has no solutions.

Example: C = 31, C = 32.
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Invertible elements in Z/nZ
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Invertible elements in Z/nZ

Definition
An element x ∈ Z/nZ is invertible if there exists y ∈ Z/nZ
such that xy = 1. Such an y is then unique, and is denoted
by x−1.

Indeed, if xy = xy′ = 1, then y = yxy′ = y′.
Example
In Z/11Z, 2 is invertible, with inverse 6, since 2× 6 = 12 = 1.
Thus 2

−1
= 6 = −5.

Counter-example
In Z/4Z, we have 2y ∈ {0, 2} for all y ∈ Z/4Z, so 2 is not
invertible.
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Invertible elements in Z/nZ
Definition
An element x ∈ Z/nZ is invertible if there exists y ∈ Z/nZ
such that xy = 1. Such an y is then unique, and is denoted
by x−1.

Definition (Division in Z/nZ)
Let x, y ∈ Z/nZ. If y is invertible, then we define

x/y = x× y−1.

Else, the division x/y is forbidden.

Example
In Z/11Z, we have 3/2 = 3× 2

−1
= 3× 6 = 18 = 7 = −4.

In Z/4Z, 3/2 makes no sense.
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Characterisation of invertibles in Z/nZ
Theorem (Invertibility test)
Let x ∈ Z and n ∈ N. Then x is invertible in Z/nZ iff.

gcd(x, n) = 1.

Proof.
x invertible ⇐⇒ xy = 1 for some y ∈ Z

⇐⇒ xy ≡ 1 mod n for some y ∈ Z
⇐⇒ xy = 1 + nk for some y, k ∈ Z
⇐⇒ xy− nk = 1 for some y, k ∈ Z
⇐⇒
Bézout

gcd(x, n) = 1.

Theorem (Simplifiability)
x ∈ Z/nZ is invertible iff. for all L,R ∈ Z/nZ,

xL = xR implies L = R.
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Characterisation of invertibles in Z/nZ
Proof.

x invertible ⇐⇒ xy = 1 for some y ∈ Z
⇐⇒ xy ≡ 1 mod n for some y ∈ Z
⇐⇒ xy = 1 + nk for some y, k ∈ Z
⇐⇒ xy− nk = 1 for some y, k ∈ Z
⇐⇒
Bézout

gcd(x, n) = 1.

Example
By Euclid’s algorithm, we see that gcd(8, 27) = 1, so 8 is
invertible mod 27. Working backwards, we find that
8u + 27v = 1 for u = −10, v = 3; so 8

−1
= −10 = 17.

Theorem (Simplifiability)
x ∈ Z/nZ is invertible iff. for all L,R ∈ Z/nZ,

xL = xR implies L = R.
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Characterisation of invertibles in Z/nZ
Theorem (Invertibility test)
Let x ∈ Z and n ∈ N. Then x is invertible in Z/nZ iff.

gcd(x, n) = 1.

Theorem (Simplifiability)
x ∈ Z/nZ is invertible iff. for all L,R ∈ Z/nZ,

xL = xR implies L = R.

Proof.
If x is invertible, then xL = xR implies x−1xL = x−1xR.
Conversely, if xL = xR always implies L = R, then the map
Z/nZ −→ Z/nZ

y 7−→ xy is injective, hence bijective because
Z/nZ is finite, hence surjective, so there exists y such
that xy = 1.
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Characterisation of invertibles in Z/nZ
Theorem (Invertibility test)
Let x ∈ Z and n ∈ N. Then x is invertible in Z/nZ iff.

gcd(x, n) = 1.

Theorem (Simplifiability)
x ∈ Z/nZ is invertible iff. for all L,R ∈ Z/nZ,

xL = xR implies L = R.

Example
In Z/27Z, 8x = 5⇐⇒ x = 8−1 × 5 = −10× 5 = 4.

Counter-example
In Z/4Z, the solutions to 2x = 0 are x = 0 and x = 2;
whereas 2x = 1 has no solutions.
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Primes are a nice case

Theorem
Let n ∈ N. TFAE:

(1) Every nonzero x ∈ Z/nZ is invertible,
(2) For all x, y ∈ Z/nZ, xy = 0 only if x = 0 or y = 0,
(3) n is prime.

Counter-example
In Z/6Z, 2 6= 0 is not invertible, and 2× 3 = 0.
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Primes are a nice case

Theorem
Let n ∈ N. TFAE:

(1) Every nonzero x ∈ Z/nZ is invertible,
(2) For all x, y ∈ Z/nZ, xy = 0 only if x = 0 or y = 0,
(3) n is prime.

Proof.
(1) ⇒ (2): If xy = 0 and x 6= 0, then y = x−1xy = x−10 = 0.
(2) ⇒ (3): If n = ab, then ab = n = 0, so a or b is 0, so n | a
or n | b, so a = n or b = n.
(3) ⇒ (1): If a 6= 0, then n ∤ a, so gcd(a, n) = 1 as n is
prime.
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The group of invertibles and Euler’s totient

Proposition
Invertible elements in Z/nZ for a group under multiplication,
denoted by

(Z/nZ)× = {x ∈ Z/nZ | x invertible}.
In other words, x, y ∈ (Z/nZ)× =⇒ xy ∈ (Z/nZ)×.

Definition
Euler’s totient function is

ϕ(n) = #(Z/nZ)× = #{0 ⩽ x < n | gcd(x, n) = 1}.

Example
(Z/6Z)× = {1,−1}, so ϕ(6) = 2.

We will see a formula for ϕ(n) very soon.
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Chinese remainders
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Reduction maps
Let n ∈ N. Given x ∈ Z, we can consider its image in Z/nZ
⇝ reduction map Z −→ Z/nZ.

If now m, n ∈ N, do we have a map such that
Z

||yy
yy
yy
yy
y

""D
DD

DD
DD

D

Z/mZ // Z/nZ
commutes?

Yes iff. for all x, x′ ∈ Z, x ≡ x′ mod m =⇒ x ≡ x′ mod n.

In particular, we must have m ≡ 0 mod n, i.e. n | m.
Conversely, if n | m, then
x ≡ x′ mod m⇐⇒ m | (x−x′) =⇒ n | (x−x′)⇐⇒ x ≡ x′ mod n.
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Reduction maps
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Reduction maps
If now m, n ∈ N, do we have a map such that

Z

||yy
yy
yy
yy
y

""D
DD

DD
DD

D

Z/mZ // Z/nZ
commutes?
Theorem
We have a reduction map Z/mZ −→ Z/nZ iff. n | m.

Example
We have a reduction map from Z/6Z to Z/2Z, e.g.

5 mod 6 7→ 1 mod 2.

But we do not have a reduction map from Z/6Z to Z/4Z.
Indeed, 5 mod 6 could be 1 mod 4, but also 3 mod 4.
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The Chinese remainders problem
Let now m, n ∈ N. Given y, z ∈ Z, can we find x ∈ Z such that{

x ≡ y mod m,
x ≡ z mod n ?

Example
Find x ∈ Z such that x ≡ 1 mod 7 and x ≡ 2 mod 9.

Not always! Let g = gcd(m, n). Then we have reduction maps
Z

uullll
lll

l
((RR

RRR
RRR

Z/mZ
((QQQ

QQQ
Z/nZ

vvmmmm
mm

Z/gZ,
so no solution if y and z do not have the same image in Z/gZ.
Example
There is no x ∈ Z such that x ≡ 5 mod 6 and x ≡ 2 mod 4.
⇝ we will suppose that gcd(m, n) = 1 from now on.
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The Chinese remainders theorem
Theorem (CRT)
Let m, n ∈ N be coprime. Then the map

中 :
Z/mnZ −→ (Z/mZ)× (Z/nZ)

(x mod mn) 7−→ (x mod m, x mod n)
is bijective.

Proof.
We construct its inverse. Since m and n are coprime, there
exist u, v ∈ Z such that mu + nv = 1. Then 中(mu) = (0, 1)
and 中(nv) = (1, 0). Thus for all y, z ∈ Z, we have
中(ynv + zmu) = (y, z), so

(Z/mZ)× (Z/nZ) −→ Z/mnZ
(y mod m, z mod n) 7−→ ynv + zmu mod mn

is an inverse of 中.
Nicolas Mascot Introduction to number theory



The Chinese remainders theorem

Theorem (CRT)
Let m, n ∈ N be coprime. Then the map

中 :
Z/mnZ −→ (Z/mZ)× (Z/nZ)

(x mod mn) 7−→ (x mod m, x mod n)
is bijective.

Example
To find x ∈ Z such that x ≡ 1 mod 7 and x ≡ 2 mod 9:
We use Euclid to find 7u + 9v = 1 with u = 4, v = −3.
We have 7u = 28, which is 0 mod 7 and 1 mod 9;
and 9v = −27, which is 1 mod 7 and 0 mod 9.
Then x = 1× 9v + 2× 7u = 29 is 1 mod 7 and 2 mod 9.
The general solution is x ≡ 29 mod 63.
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Application to Euler’s ϕ
For m, n coprime, CRT reduces the study of Z/mnZ to that
of Z/mZ and Z/nZ.
Example
中 induces (Z/mnZ)× ←→ (Z/mZ)× × (Z/nZ)×. Thus
x invertible mod mn ⇐⇒ x invertible mod m and mod n.

Corollary
ϕ is (weakly) multiplicative.

Theorem
Let n =

∏
i p

vi
i , with the pi pairwise distinct primes and the

vi ⩾ 1. Then
ϕ(n) =

∏
i
(pi − 1)pvi−1

i = n
∏
p|n

p prime

(
1− 1

p

)
.

Proof.
By multiplicativity, ϕ(

∏
i p

vi
i ) =

∏
i ϕ(p

vi
i ).

And in Z/pvZ, an element is invertible iff. it is coprime to pv,
iff. it is coprime to p.
So exactly 1 out of p element is non-invertible.
⇝ pv−1 non-invertibles, and pv − pv−1 invertibles.
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Application to Euler’s ϕ
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Additive and multiplicative
order
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Sequences in finite sets

Let S be a finite set, and f : S −→ S a function. Define a
sequence in S by picking s0 ∈ S and defining inductively
sm+1 = f(sm).

Theorem
Such a sequence is always ultimately periodic.

Example

Tail of length 2, period of length 5.
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Sequences in finite sets
Let S be a finite set, and f : S −→ S a function. Define a
sequence in S by picking s0 ∈ S and defining inductively
sm+1 = f(sm).
Theorem
Such a sequence is always ultimately periodic.

Example

• • • • • •

• • • • • •

• • • • • •
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Sequences in finite sets
Let S be a finite set, and f : S −→ S a function. Define a
sequence in S by picking s0 ∈ S and defining inductively
sm+1 = f(sm).
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Sequences in finite sets
Let S be a finite set, and f : S −→ S a function. Define a
sequence in S by picking s0 ∈ S and defining inductively
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Sequences in finite sets
Let S be a finite set, and f : S −→ S a function. Define a
sequence in S by picking s0 ∈ S and defining inductively
sm+1 = f(sm).
Theorem
Such a sequence is always ultimately periodic.
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Additive order

Let x ∈ Z/nZ. Define a sequence in Z/nZ by s0 = 0 and
sm+1 = sm + x; thus sm = mx ∈ Z/nZ for all m.

Definition
The additive order of x is

AO(x) = period of sm.

Example
Take x = 4 ∈ Z/6Z. Then
s0 = 0, s1 = s0 + x = 4, s2 = s1 + x = 2, s3 = s2 + x = 0
⇝ AO(4 mod 6) = 3.
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Determination of the additive order
Theorem
For all x ∈ Z/nZ, the sequence sm = mx is purely periodic (no
tail), and we have AO(x) = n

gcd(x,n) .

Proof.
Let g = gcd(x, n). For all i, j ∈ Z⩾0, we have

ix = jx⇐⇒ ix ≡ jx mod n
⇐⇒ n | (ix− jx) = (i− j)x
⇐⇒ n

g | (i− j)x
g

Gauss⇐⇒
gcd( n

g ,
x
g )=1

n
g | (i− j)

⇐⇒ i ≡ j mod n
g .
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Multiplicative order

Let x ∈ (Z/nZ)×. Define a sequence in (Z/nZ)× by t0 = 1
and tm+1 = tm × x; thus tm = xm ∈ (Z/nZ)× for all m.

Definition
The multiplicative order of x is

MO(x) = period of tm.

Example
Take x = 2 ∈ Z/7Z. Then
t0 = 1, t1 = t0 × x = 2, t2 = t1 × x = 4, t3 = t2 × x = 1
⇝ MO(2 mod 7) = 3.
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Properties of the multiplicative order

Theorem (Fermat’s little theorem)
For all x ∈ (Z/nZ)×, we have xϕ(n) = 1.

Proof.
Lagrange. Alternatively, let (Z/nZ)× = {y1, y2, · · · , yϕ(n)}. As

x is invertible, the map (Z/nZ)× −→ (Z/nZ)×
y 7−→ xy is

bijective with inverse (Z/nZ)× −→ (Z/nZ)×
y 7−→ x−1y , so we also

have (Z/nZ)× = {xy1, xy2, · · · , xyϕ(n)}. Multiplying yields

y1y2 · · · yϕ(n) = xy1xy2 · · · xyϕ(n) = xϕ(n)y1y2 · · · yϕ(n),
and we can simplify by the yi because they are invertible.
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Properties of the multiplicative order

Theorem (Fermat’s little theorem)
For all x ∈ (Z/nZ)×, we have xϕ(n) = 1.

Corollary
For all x ∈ (Z/nZ)×, the sequence tm = xm is purely periodic
(no tail), and we have MO(x) | ϕ(n).

Corollary
For all x ∈ Z coprime to n, for all i, j ∈ Z,

i ≡ j mod ϕ(n) =⇒ xi ≡ xj mod n.
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Properties of the multiplicative order

Theorem (Fermat’s little theorem)
For all x ∈ (Z/nZ)×, we have xϕ(n) = 1.

Corollary
For all x ∈ Z coprime to n, for all i, j ∈ Z,

i ≡ j mod ϕ(n) =⇒ xi ≡ xj mod n.

Example
What is 3532021 mod 10?
First, 353 ≡ 3 mod 10, so 3532021 ≡ 32021 mod 10.
Next, ϕ(10) = 10(1− 1/2)(1− 1/5) = 4. As
2021 ≡ 1 mod 4, 32021 ≡ 31 = 3 mod 10.
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Primitive roots
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Primitive roots

Definition
Let x ∈ Z and n ∈ N. We say that x is a primitive root mod n
if gcd(x, n) = 1 and MO(x mod n) = ϕ(n).

Example
MO(2 mod 7) = 3 < ϕ(7) = 6, so 2 is not a primitive root
mod 7.
In Z/7Z, we have 30 = 1, 31 = 3, 32 = 2, 33 = −1, 34 = −3,
35 = −2, 36 = 1. So 3 is a primitive root mod 7.

Counter-example
Primitive roots do not always exist! For instance, every
x ∈ (Z/8Z)× = {±1,±3} satisfies x2 = 1, so MO(x) | 2,
whereas ϕ(8) = 4.
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Discrete logarithm

Definition (Reminder)
Let x ∈ Z and n ∈ N. We say that x is a primitive root mod n
if gcd(x, n) = 1 and MO(x mod n) = ϕ(n).

Remark
Let x ∈ (Z/nZ)×. Then MO(x) = #{xm,m ∈ Z}, and every
power of x is of the form xm for some unique m ∈ Z/MO(x)Z.
In particular, x is a primitive root iff. (Z/nZ)× = {xm,m ∈ Z}.

Nicolas Mascot Introduction to number theory



Discrete logarithm

Remark
Let x ∈ (Z/nZ)×. Then MO(x) = #{xm,m ∈ Z}, and every
power of x is of the form xm for some unique m ∈ Z/MO(x)Z.
In particular, x is a primitive root iff. (Z/nZ)× = {xm,m ∈ Z}.

Example
•=invertible, ◦=non-invertible. ϕ(n) = 6.

• ◦ ◦ •
''PP

PPP
PPP

PP ◦ ◦

• • // •
wwooo

ooo
ooo

o MO = 3 • // •

``AAAAA
•

����
��
�

MO = 6

•

??�����
• ◦ ⇝ no •

OO

•oo ◦ ⇝ yes
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Discrete logarithm

Remark
Let x ∈ (Z/nZ)×. Then MO(x) = #{xm,m ∈ Z}, and every
power of x is of the form xm for some unique m ∈ Z/MO(x)Z.
In particular, x is a primitive root iff. (Z/nZ)× = {xm,m ∈ Z}.

Definition (Discrete logarithm)
Suppose g ∈ (Z/nZ)× is a primitive root. Then every
x ∈ (Z/nZ)× is of the form x = gm for some unique
m ∈ Z/ϕ(n)Z, which is denoted by m = logg x ∈ Z/ϕ(n)Z.
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Discrete logarithm

Definition (Discrete logarithm)
Suppose g ∈ (Z/nZ)× is a primitive root. Then every
x ∈ (Z/nZ)× is of the form x = gm for some unique
m ∈ Z/ϕ(n)Z, which is denoted by m = logg x ∈ Z/ϕ(n)Z.

Example
Using the primitive root g = 3 ∈ (Z/7Z)×, we have

logg(−1 mod 7) = 3 mod 6, because g3 = −1 mod 7,

and indeed
gm = −1 mod 7⇐⇒ m ≡ 3 mod 6.
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Calculation of MO
Lemma (MO lemma)
Let x ∈ (Z/nZ)×. Then for all m ∈ Z, we have (xm)MO(x) = 1

so MO(xm) | MO(x), and in fact MO(xm) = MO(x)
gcd(m,MO(x)) .

Proof.
Recall that for all k ∈ Z, we have xk = 1⇐⇒ MO(x) | k.
First, (xm)MO(x) = xm MO(x) = (xMO(x))m = 1m = 1.
Let m ∈ Z, and let g = gcd(m,MO(x)); then for all k ∈ Z,

(xm)k = 1⇐⇒ xmk = 1

⇐⇒ MO(x) | mk

⇐⇒ MO(x)
g | m

g k

Gauss⇐⇒ MO(x)
g | k.
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Calculation of MO

Lemma (MO lemma)
Let x ∈ (Z/nZ)×. Then for all m ∈ Z, we have (xm)MO(x) = 1

so MO(xm) | MO(x), and in fact MO(xm) = MO(x)
gcd(m,MO(x)) .

Corollary
Suppose g ∈ (Z/nZ)× is a primitive root. Then for all
x ∈ (Z/nZ)×,

MO(x) = ϕ(n)
gcd(ϕ(n), logg x) .

Corollary
If there exist primitive roots in Z/nZ, then there are exactly
ϕ(ϕ(n)) of them.
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Primitive roots mod p
Lemma
Let p ∈ N prime, and F(x) = xd + ad−1xd−1 + · · ·+ a1x + a0
a polynomial of degree d with coefficients in Z/pZ.
Then F(x) has at most d roots in Z/pZ.

Counter-example
The polynomial x2 − 1 has degree 2, but all 4 elements of
(Z/8Z)× = {±1,±3} are roots of it.

Lemma
For all n ∈ N, we have

∑
d|n

ϕ(d) = n.

Theorem
For all p ∈ N prime, there are ϕ(p− 1) > 0 primitive roots
in Z/pZ.
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Primitive roots mod p
Lemma
Let p ∈ N prime, and F(x) = xd + ad−1xd−1 + · · ·+ a1x + a0
a polynomial of degree d with coefficients in Z/pZ.
Then F(x) has at most d roots in Z/pZ.

Proof.
We prove by induction on n ⩾ 1 that if z1, · · · , zn are distinct
roots, then F(x) = (x− z1) · · · (x− zn)G(x).
For n = 1, shift variable x = y+ z1: F(x) = F(y+ z1) = yG(y).
And if zn+1 is another root of F(x) = (x− z1) · · · (x− zn)G(x),
then (zn+1 − z1) · · · (zn+1 − zn)G(zn+1) = 0, so G(zn+1) = 0
because p is prime.

Lemma
For all n ∈ N, we have

∑
d|n

ϕ(d) = n.

Theorem
For all p ∈ N prime, there are ϕ(p− 1) > 0 primitive roots
in Z/pZ.
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Primitive roots mod p
Lemma
Let p ∈ N prime, and F(x) = xd + ad−1xd−1 + · · ·+ a1x + a0
a polynomial of degree d with coefficients in Z/pZ.
Then F(x) has at most d roots in Z/pZ.

Lemma
For all n ∈ N, we have

∑
d|n

ϕ(d) = n.

Proof.
Consider the n fractions 0

n ,
1
n ,

2
n , · · · ,

n−1
n . When we simplify

them, we get the x
d with d | n, gcd(x, d) = 1, and 0 ⩽ x < d.

For each d, there are ϕ(d) such fractions.

Theorem
For all p ∈ N prime, there are ϕ(p− 1) > 0 primitive roots
in Z/pZ.
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Primitive roots mod p

Lemma
Let p ∈ N prime, and F(x) = xd + ad−1xd−1 + · · ·+ a1x + a0
a polynomial of degree d with coefficients in Z/pZ.
Then F(x) has at most d roots in Z/pZ.

Lemma
For all n ∈ N, we have

∑
d|n

ϕ(d) = n.

Theorem
For all p ∈ N prime, there are ϕ(p− 1) > 0 primitive roots
in Z/pZ.
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Primitive roots mod p: proof
Lemma
For all d ∈ N, let

Yd = {y ∈ (Z/pZ)× | MO(y) = d}, ψ(d) = #Yd.

Then ψ(d) ⩽ ϕ(d) for all d.

Proof.
If Yd = ∅, then ψ(d) = 0 < ϕ(d) so OK. By Fermat, this
always happens if d ∤ ϕ(p).
Else, let y ∈ Yd. Then MO(y) = d, so {ym,m ∈ Z} has d
elements. By MO lemma, they are all roots of xd − 1; thus
{ym,m ∈ Z} = {roots of xd − 1}. In particular, every element
of Yd is a power of y. Therefore
Yd = {ym | m ∈ Z/dZ, MO(ym) = d} = {ym |m ∈ (Z/dZ)×}
by MO lemma, whence ψ(d) = ϕ(d).
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Primitive roots mod p: proof

Lemma
For all d ∈ N, let

Yd = {y ∈ (Z/pZ)× | MO(y) = d}, ψ(d) = #Yd.

Then ψ(d) ⩽ ϕ(d) for all d.

Proof of Theorem.
We have

ϕ(p) = #(Z/pZ)× =
∑

d|ϕ(p)
ψ(d) ⩽

∑
d|ϕ(p)

ϕ(d) = ϕ(p).

This forces ψ(d) = ϕ(d) for all d | ϕ(p); in particular
for d = ϕ(p) we have ψ(ϕ(p)) = ϕ(ϕ(p)) = ϕ(p− 1).
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Finding primitive roots

Lemma
Let x ∈ (Z/nZ)×, and let k ∈ N be such that xk = 1. Then
MO(x) = k iff. for all primes p | k, xk/p 6= 1.

Proof.
We have that MO(x) | k, so

MO(x) < k⇐⇒ k/MO(x) ⩾ 2

⇐⇒ there is a prime p | k
MO(x)

⇐⇒ there is a prime p s.t. MO(x) | k
p .
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Finding primitive roots
Lemma
Let x ∈ (Z/nZ)×, and let k ∈ N be such that xk = 1. Then
MO(x) = k iff. for all primes p | k, xk/p 6= 1.

Example
What is MO(7 mod 19)?
We have ϕ(19) = 18 = 2× 32.
We compute in Z/19Z that 718/3 = 76 = 1,
so MO(7 mod 19) | 6 = 2× 3.
Next, 76/3 6= 1, so MO(7 mod 19) ∤ 2,
but 76/2 = 1 so MO(7 mod 19) | 3.
Finally, 73/3 6= 1, so MO(7 mod 19) ∤ 1; thus

MO(7 mod 19) = 3.
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Finding primitive roots
Lemma
Let x ∈ (Z/nZ)×, and let k ∈ N be such that xk = 1. Then
MO(x) = k iff. for all primes p | k, xk/p 6= 1.

Corollary
Let x ∈ (Z/nZ)×. Then x is a primitive root iff. for all
primes p | ϕ(n), we have xϕ(n)/p 6= 1.

Example
We want to find a primitive root in Z/11Z. We have
ϕ(11) = 10 = 2× 5, so the proportion of primitive roots
in (Z/11Z)× is ϕ(10)/10 = (1− 1

2
)(1− 1

5
) = 40%.

We try x = 2; as
22 = 4 6= 1 mod 11 and 25 = 32 = −1 6= 1 mod 11,

2 is a primitive root.
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