MAU23101
 Introduction to number theory 2 - Congruences and $\mathbb{Z} / n \mathbb{Z}$

Nicolas Mascot
mascotn@tcd.ie
Module web page

Michaelmas 2020-2021
Version: October 15, 2020

Trinity College Dublin
Coláiste na Tríonóide, Baile Átha Cliath
The University of Dublin

Congruences

Congruences

Definition

Let $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$. We say that a is congruent to b modulo n, and we write

$$
a \equiv b \bmod n
$$

if $n \mid(a-b)$.

Example

$36 \equiv 16 \equiv-4 \bmod 10$.
$a \equiv b \bmod 1$ for all $a, b \in \mathbb{Z}$.

The set $\mathbb{Z} / n \mathbb{Z}$

If $a \equiv b \bmod n$ and $b \equiv c \bmod n$, then $a \equiv c \bmod n$, because $a-c=(a-b)+(b-c)$.
So if we fix $n \in \mathbb{N}$, we can sort the integers into "bags" of congruence.

Example

For $n=2$, we have 2 bags:
$\{\cdots,-4,-2,0,2,4, \cdots\}$ and $\{\cdots,-3,-1,1,3,5, \cdots\}$.
For $n=3$, we have 3 bags:
$\{\cdots,-6,-3,0,3,6, \cdots\},\{\cdots,-5,-2,1,4,7, \cdots\}$, and $\{\cdots,-4,-1,2,5,8, \cdots\}$.

Definition

The set of these "bags" is called $\mathbb{Z} / n \mathbb{Z}$.

The set $\mathbb{Z} / n \mathbb{Z}$

Let $x \in \mathbb{Z}$, and let $x=n q+r$ be its division by n. Then $x \equiv r \bmod n$.
Conversely, if $0 \leqslant x, y<n$, then $x \not \equiv y \bmod n$ unless $x=y$.

Theorem

Let $n \in \mathbb{N}$. The set $\mathbb{Z} / n \mathbb{Z}$ has exactly n elements:

$$
\begin{aligned}
\overline{0}=\{x \in \mathbb{Z} \mid x \equiv 0 \bmod n\} & =\{n q, q \in \mathbb{Z}\} \\
\overline{1}=\{x \in \mathbb{Z} \mid x \equiv 1 \bmod n\} & =\{n q+1, q \in \mathbb{Z}\} \\
\overline{2}=\{x \in \mathbb{Z} \mid x \equiv 2 \bmod n\} & =\{n q+2, q \in \mathbb{Z}\} \\
\vdots & \\
\overline{n-1}=\{x \in \mathbb{Z} \mid x \equiv n-1 \bmod n\} & =\{n q+n-1, q \in \mathbb{Z}\} .
\end{aligned}
$$

The ring $\mathbb{Z} / n \mathbb{Z}$

Operations in $\mathbb{Z} / n \mathbb{Z}$

Fix $n \in \mathbb{N}$, and let $X, Y \in \mathbb{Z} / n \mathbb{Z}$. In order to define $X+Y$, we take $x \in X, y \in Y$, and we say that $X+Y$ is the bag containing $x+y$. Similarly, $X Y$ is the bag containing $x y$.

Example

Take $n=5, X=\overline{2}=\{\cdots,-3, \mathbf{2}, 7, \cdots\}$, and $Y=\overline{3}=\{\cdots,-2, \mathbf{3}, 8, \cdots\}$. Then

$$
X+Y=\text { bag containing } 2+3=\{\cdots,-5,0,5, \cdots\}=\overline{0},
$$

$$
X Y=\text { bag containing } 2 \times 3=\{\cdots,-4,1,6, \cdots\}=\overline{1} .
$$

Lemma

Let $n \in \mathbb{N}$, and let $a, a^{\prime}, b, b^{\prime} \in \mathbb{Z}$ be such that $a \equiv a^{\prime} \bmod n$ and $b \equiv b^{\prime} \bmod n$. Then $a+b \equiv a^{\prime}+b^{\prime} \bmod n$, $a-b \equiv a^{\prime}-b^{\prime} \bmod n$, and $a b \equiv a^{\prime} b^{\prime} \bmod n$.

Operations in $\mathbb{Z} / n \mathbb{Z}$

Lemma

Let $n \in \mathbb{N}$, and let $a, a^{\prime}, b, b^{\prime} \in \mathbb{Z}$ be such that $a \equiv a^{\prime} \bmod n$ and $b \equiv b^{\prime} \bmod n$. Then $a+b \equiv a^{\prime}+b^{\prime} \bmod n$, $a-b \equiv a^{\prime}-b^{\prime} \bmod n$, and $a b \equiv a^{\prime} b^{\prime} \bmod n$.

Proof.

$a \equiv a^{\prime} \bmod n$ means $a^{\prime}-a=k n$ for some $k \in \mathbb{Z}$; similarly $b^{\prime}-b=\ln$ for some $I \in \mathbb{Z}$. Then

$$
\begin{gathered}
\left(a^{\prime}+b^{\prime}\right)-(a+b)=\left(a^{\prime}-a\right)+\left(b^{\prime}-b\right)=k n+\ln =(k+l) n \\
\begin{aligned}
\left(a^{\prime}-b^{\prime}\right)-(a-b)=\left(a^{\prime}-a\right)-\left(b^{\prime}-b\right) & =k n-\ln =(k-l) n \\
\left(a^{\prime} b^{\prime}\right)-(a b) & =a^{\prime} b^{\prime}-a b^{\prime}+a b^{\prime}-a b \\
& =\left(a^{\prime}-a\right) b^{\prime}+a\left(b^{\prime}-b\right) \\
& =k n b^{\prime}+a l n \\
& =\left(k b^{\prime}+a l\right) n
\end{aligned}
\end{gathered}
$$

The ring $\mathbb{Z} / n \mathbb{Z}$

Computing in $\mathbb{Z} / n \mathbb{Z}$ means that we treat multiples of n as 0 . So we can replace any integer with its remainder by n. And $\bar{x}=\bar{y}$ iff. $x \equiv y \bmod n$.

Example

In $\mathbb{Z} / 12 \mathbb{Z}$, we have $\overline{7} \times \overline{8}-\overline{9}=\overline{56}-\overline{9}=\overline{8}-\overline{9}=\overline{-1}=\overline{11}$.
In $\mathbb{Z} / 13 \mathbb{Z}$, we have $\overline{7} \times \overline{8}-\overline{9}=\overline{56}-\overline{9}=\overline{4}-\overline{9}=\overline{-5}=\overline{8}$.

Remark

Although $\mathbb{Z} / n \mathbb{Z}=\{\overline{0}, \overline{1}, \overline{2}, \cdots, \overline{n-1}\}$, computations are easier with a more symmetric choice of representatives. For instance, in $\mathbb{Z} / 12 \mathbb{Z}=\{\overline{-5}, \overline{-4}, \cdots, \overline{5}, \overline{6}\}$, we have

$$
\overline{7} \times \overline{8}-\overline{9}=\overline{-5} \times \overline{-4}+\overline{3}=\overline{20}+\overline{3}=\overline{-4}+\overline{3}=\overline{-1} .
$$

$\mathbb{Z} / n \mathbb{Z}$ is a ring: a set in which we can,,$+- x$.
For division, we will see later!

Application to Diophantine equations

Idea

Suppose we have a Diophantine equation

$$
F(x, y, \cdots)=C
$$

where F is a polynomial with coefficients in \mathbb{Z}, and $C \in \mathbb{Z}$. If $x=a, y=b, \cdots$ is a solution, then for all $n \in \mathbb{N}$, in $\mathbb{Z} / n \mathbb{Z}$ we have

$$
F(\bar{a}, \bar{b}, \cdots)=\bar{C}
$$

So conversely, if for some $n \in \mathbb{N}$ the equation has no solution in $\mathbb{Z} / n \mathbb{Z}$, then it has no solution in \mathbb{Z}.

The point is that $\mathbb{Z} / n \mathbb{Z}$ is finite, so we only need to check finitely many possibilities for x, y, \cdots to disprove the existence of solutions in \mathbb{Z} !

Example 1: sum of two squares

Does $x^{2}+y^{2}=2019$ have integral solutions?
Take $n=4:$ In $\mathbb{Z} / 4 \mathbb{Z}$, we have

x	$\overline{-1}$	$\overline{0}$	$\overline{1}$	$\overline{2}$
x^{2}	$\overline{1}$	$\overline{0}$	$\overline{1}$	$\overline{0}$

so $\overline{x^{2}+y^{2}}=\bar{x}^{2}+\bar{y}^{2}$ can be either

$$
\overline{0}+\overline{0}=\overline{0}, \text { or } \overline{0}+\overline{1}=\overline{1}, \text { or } \overline{1}+\overline{1}=\overline{2}
$$

But $\overline{2019}=\overline{19}=\overline{-1} \notin\{\overline{0}, \overline{1}, \overline{2}\}$, so no solutions in $\mathbb{Z} / 4 \mathbb{Z}$, so no solutions in \mathbb{Z} either!

Similarly, no solutions to $x^{2}+y^{2}=4 k-1$ for any $k \in \mathbb{Z}$.
$5 x^{2}-7 y^{2}=4 k-1$ either.

Example 2: sum of three cubes

In $\mathbb{Z} / 9 \mathbb{Z}$, we have

x	$-\overline{4}$	$-\overline{3}$	$-\overline{2}$	$-\overline{1}$	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$
x^{3}	$-\overline{1}$	$\overline{0}$	$\overline{1}$	$-\overline{1}$	$\overline{0}$	$\overline{1}$	$-\overline{1}$	$\overline{0}$	$\overline{1}$.

So necessarily $\overline{x^{3}+y^{3}+z^{3}} \in\{-\overline{3},-\overline{2},-\overline{1}, \overline{0}, \overline{1}, \overline{2}, \overline{3}\}$. Therefore, for all $C \in \mathbb{Z}$, if $C \equiv \pm 4 \bmod 9$, then the Diophantine equation $x^{3}+y^{3}+z^{3}=C$ has no solutions.

Example: $C=31, C=32$.

Invertible elements in $\mathbb{Z} / n \mathbb{Z}$

Invertible elements in $\mathbb{Z} / n \mathbb{Z}$

Definition

An element $x \in \mathbb{Z} / n \mathbb{Z}$ is invertible if there exists $y \in \mathbb{Z} / n \mathbb{Z}$ such that $x y=\overline{1}$. Such an y is then unique, and is denoted by x^{-1}.

Indeed, if $x y=x y^{\prime}=\overline{1}$, then $y=y x y=y^{\prime}$.

Example

$\operatorname{In} \mathbb{Z} / 11 \mathbb{Z}, \overline{2}$ is invertible, with inverse $\overline{6}$, since $\overline{2} \times \overline{6}=\overline{12}=\overline{1}$. Thus $\overline{2}^{-1}=\overline{6}=-\overline{5}$.

Counter-example

In $\mathbb{Z} / 4 \mathbb{Z}$, we have $\overline{2} y \in\{\overline{0}, \overline{2}\}$ for all $y \in \mathbb{Z} / 4 \mathbb{Z}$, so $\overline{2}$ is not invertible.

Invertible elements in $\mathbb{Z} / n \mathbb{Z}$

Definition

An element $x \in \mathbb{Z} / n \mathbb{Z}$ is invertible if there exists $y \in \mathbb{Z} / n \mathbb{Z}$ such that $x y=\overline{1}$. Such an y is then unique, and is denoted by x^{-1}.

Definition (Division in $\mathbb{Z} / n \mathbb{Z}$)

Let $x, y \in \mathbb{Z} / n \mathbb{Z}$. If y is invertible, then we define

$$
x / y=x \times y^{-1}
$$

Else, the division x / y is forbidden.

Example

In $\mathbb{Z} / 11 \mathbb{Z}$, we have $\overline{3} / \overline{2}=\overline{3} \times \overline{2}^{-1}=\overline{3} \times \overline{6}=\overline{18}=\overline{7}=-\overline{4}$.
In $\mathbb{Z} / 4 \mathbb{Z}, \overline{3} / \overline{2}$ makes no sense.

Characterisation of invertibles in $\mathbb{Z} / n \mathbb{Z}$

Theorem (Invertibility test)

Let $x \in \mathbb{Z}$ and $n \in \mathbb{N}$. Then \bar{x} is invertible in $\mathbb{Z} / n \mathbb{Z}$ iff.

$$
\operatorname{gcd}(x, n)=1
$$

Proof.

\bar{x} invertible $\Longleftrightarrow \overline{x y}=\overline{1}$ for some $y \in \mathbb{Z}$
$\Longleftrightarrow x y \equiv 1 \bmod n$ for some $y \in \mathbb{Z}$
$\Longleftrightarrow x y=1+n k$ for some $y, k \in \mathbb{Z}$
$\Longleftrightarrow x y-n k=1$ for some $y, k \in \mathbb{Z}$
$\underset{\text { Bézout }}{\Longleftrightarrow} \operatorname{gcd}(x, n)=1$.

Characterisation of invertibles in $\mathbb{Z} / n \mathbb{Z}$

Proof.

$$
\begin{aligned}
\bar{x} \text { invertible } & \Longleftrightarrow \overline{x y}=\overline{1} \text { for some } y \in \mathbb{Z} \\
& \Longleftrightarrow x y \equiv 1 \bmod n \text { for some } y \in \mathbb{Z} \\
& \Longleftrightarrow x y=1+n k \text { for some } y, k \in \mathbb{Z} \\
& \Longleftrightarrow x y-n k=1 \text { for some } y, k \in \mathbb{Z} \\
& \Longleftrightarrow \operatorname{gcd}(x, n)=1 .
\end{aligned}
$$

Example

By Euclid's algorithm, we see that $\operatorname{gcd}(8,27)=1$, so 8 is invertible mod 27 . Working backwards, we find that $8 u+27 v=1$ for $u=-10, v=3$; so $\overline{8}^{-1}=-\overline{10}=\overline{17}$.

Characterisation of invertibles in $\mathbb{Z} / n \mathbb{Z}$

Theorem (Invertibility test)

Let $x \in \mathbb{Z}$ and $n \in \mathbb{N}$. Then \bar{x} is invertible in $\mathbb{Z} / n \mathbb{Z}$ iff.

$$
\operatorname{gcd}(x, n)=1
$$

Theorem (Simplifiability)

$x \in \mathbb{Z} / n \mathbb{Z}$ is invertible iff. for all $L, R \in \mathbb{Z} / n \mathbb{Z}$,

$$
x L=x R \text { implies } L=R .
$$

Proof.

If x is invertible, then $x L=x R$ implies $x^{-1} x L=x^{-1} x R$. Conversely, if $x L=x R$ always implies $L=R$, then the map

$$
\begin{array}{ccc}
\mathbb{Z} / n \mathbb{Z} & \longrightarrow & \mathbb{Z} / n \mathbb{Z} \\
y & \longmapsto & x y
\end{array}
$$

$\mathbb{Z} / n \mathbb{Z}$ is finite, hence surjective, so there exists y such that $x y=\overline{1}$.

Characterisation of invertibles in $\mathbb{Z} / n \mathbb{Z}$

Theorem (Invertibility test)

Let $x \in \mathbb{Z}$ and $n \in \mathbb{N}$. Then \bar{x} is invertible in $\mathbb{Z} / n \mathbb{Z}$ iff.

$$
\operatorname{gcd}(x, n)=1
$$

Theorem (Simplifiability)

$x \in \mathbb{Z} / n \mathbb{Z}$ is invertible iff. for all $L, R \in \mathbb{Z} / n \mathbb{Z}$,

$$
x L=x R \text { implies } L=R .
$$

Example

In $\mathbb{Z} / 27 \mathbb{Z}, 8 x=5 \Longleftrightarrow x=8^{-1} \times 5=-10 \times 5=4$.

Counter-example

In $\mathbb{Z} / 4 \mathbb{Z}$, the solutions to $2 x=0$ are $x=0$ and $x=2$; whereas $2 x=1$ has no solutions.

Primes are a nice case

Theorem

Let $n \in \mathbb{N}$. TFAE:
(1) Every nonzero $x \in \mathbb{Z} / n \mathbb{Z}$ is invertible,
(2) For all $x, y \in \mathbb{Z} / n \mathbb{Z}, x y=\overline{0}$ only if $x=\overline{0}$ or $y=\overline{0}$,
(0) n is prime.

Counter-example

$\ln \mathbb{Z} / 6 \mathbb{Z}, \overline{2} \neq \overline{0}$ is not invertible, and $\overline{2} \times \overline{3}=\overline{0}$.

Primes are a nice case

Theorem

Let $n \in \mathbb{N}$. TFAE:
(1) Every nonzero $x \in \mathbb{Z} / n \mathbb{Z}$ is invertible,
(2) For all $x, y \in \mathbb{Z} / n \mathbb{Z}, x y=\overline{0}$ only if $x=\overline{0}$ or $y=\overline{0}$,
(3) n is prime.

Proof.

$(1) \Rightarrow(2):$ If $x y=\overline{0}$ and $x \neq \overline{0}$, then $y=x^{-1} x y=x^{-1} \overline{0}=\overline{0}$.
(2) \Rightarrow (3): If $n=a b$, then $\bar{a} \bar{b}=\bar{n}=\overline{0}$, so \bar{a} or \bar{b} is $\overline{0}$, so $n \mid a$ or $n \mid b$, so $a=n$ or $b=n$.
$(3) \Rightarrow(1)$: If $\bar{a} \neq 0$, then $n \nmid a$, so $\operatorname{gcd}(a, n)=1$ as n is prime.

The group of invertibles and Euler's totient

Proposition

Invertible elements in $\mathbb{Z} / n \mathbb{Z}$ for a group under multiplication, denoted by

$$
(\mathbb{Z} / n \mathbb{Z})^{\times}=\{x \in \mathbb{Z} / n \mathbb{Z} \mid x \text { invertible }\}
$$

In other words, $x, y \in(\mathbb{Z} / n \mathbb{Z})^{\times} \Longrightarrow x y \in(\mathbb{Z} / n \mathbb{Z})^{\times}$.

Definition

Euler's totient function is

$$
\phi(n)=\#(\mathbb{Z} / n \mathbb{Z})^{\times}=\#\{0 \leqslant x<n \mid \operatorname{gcd}(x, n)=1\}
$$

Example

$$
(\mathbb{Z} / 6 \mathbb{Z})^{\times}=\{\overline{1},-\overline{1}\}, \text { so } \phi(6)=2
$$

We will see a formula for $\phi(n)$ very soon.

Chinese remainders

Reduction maps

Let $n \in \mathbb{N}$. Given $x \in \mathbb{Z}$, we can consider its image in $\mathbb{Z} / n \mathbb{Z}$ \rightsquigarrow reduction map $\mathbb{Z} \longrightarrow \mathbb{Z} / n \mathbb{Z}$.

Reduction maps

Let $n \in \mathbb{N}$. Given $x \in \mathbb{Z}$, we can consider its image in $\mathbb{Z} / n \mathbb{Z}$ \rightsquigarrow reduction map $\mathbb{Z} \longrightarrow \mathbb{Z} / n \mathbb{Z}$.

If now $m, n \in \mathbb{N}$, do we have a map such that

commutes?

Reduction maps

Let $n \in \mathbb{N}$. Given $x \in \mathbb{Z}$, we can consider its image in $\mathbb{Z} / n \mathbb{Z}$ \rightsquigarrow reduction $\operatorname{map} \mathbb{Z} \longrightarrow \mathbb{Z} / n \mathbb{Z}$.

If now $m, n \in \mathbb{N}$, do we have a map such that

commutes?
Yes iff. for all $x, x^{\prime} \in \mathbb{Z}, x \equiv x^{\prime} \bmod m \Longrightarrow x \equiv x^{\prime} \bmod n$.

Reduction maps

Let $n \in \mathbb{N}$. Given $x \in \mathbb{Z}$, we can consider its image in $\mathbb{Z} / n \mathbb{Z}$ \rightsquigarrow reduction map $\mathbb{Z} \longrightarrow \mathbb{Z} / n \mathbb{Z}$.

If now $m, n \in \mathbb{N}$, do we have a map such that

commutes?
Yes iff. for all $x, x^{\prime} \in \mathbb{Z}, x \equiv x^{\prime} \bmod m \Longrightarrow x \equiv x^{\prime} \bmod n$.
In particular, we must have $m \equiv 0 \bmod n$, i.e. $n \mid m$.
Conversely, if $n \mid m$, then
$x \equiv x^{\prime} \bmod m \Longleftrightarrow m|(x-x) \Longrightarrow n|\left(x-x^{\prime}\right) \Longleftrightarrow x \equiv x^{\prime} \bmod n$.

Reduction maps

If now $m, n \in \mathbb{N}$, do we have a map such that

commutes?
Theorem
We have a reduction map $\mathbb{Z} / m \mathbb{Z} \longrightarrow \mathbb{Z} / n \mathbb{Z}$ iff. $n \mid m$.

Example

We have a reduction map from $\mathbb{Z} / 6 \mathbb{Z}$ to $\mathbb{Z} / 2 \mathbb{Z}$, e.g.

$$
5 \bmod 6 \mapsto 1 \bmod 2
$$

But we do not have a reduction map from $\mathbb{Z} / 6 \mathbb{Z}$ to $\mathbb{Z} / 4 \mathbb{Z}$. Indeed, $5 \bmod 6$ could be $1 \bmod 4$, but also $3 \bmod 4$.

The Chinese remainders problem

Let now $m, n \in \mathbb{N}$. Given $y, z \in \mathbb{Z}$, can we find $x \in \mathbb{Z}$ such that

$$
\left\{\begin{array}{l}
x \equiv y \bmod m \\
x \equiv z \bmod n ?
\end{array}\right.
$$

Example

Find $x \in \mathbb{Z}$ such that $x \equiv 1 \bmod 7$ and $x \equiv 2 \bmod 9$.

The Chinese remainders problem

Let now $m, n \in \mathbb{N}$. Given $y, z \in \mathbb{Z}$, can we find $x \in \mathbb{Z}$ such that

$$
\left\{\begin{array}{l}
x \equiv y \bmod m \\
x \equiv z \bmod n ?
\end{array}\right.
$$

Not always! Let $g=\operatorname{gcd}(m, n)$. Then we have reduction maps

so no solution if y and z do not have the same image in $\mathbb{Z} / g \mathbb{Z}$.

Example

There is no $x \in \mathbb{Z}$ such that $x \equiv 5 \bmod 6$ and $x \equiv 2 \bmod 4$.
\rightsquigarrow we will suppose that $\operatorname{gcd}(m, n)=1$ from now on.

The Chinese remainders theorem

Theorem（CRT）

Let $m, n \in \mathbb{N}$ be coprime．Then the map

$$
\begin{array}{cl}
\mathbb{Z} / m n \mathbb{Z} & \longrightarrow(\mathbb{Z} / m \mathbb{Z}) \times(\mathbb{Z} / n \mathbb{Z}) \\
(x \bmod m n) & \longmapsto(x \bmod m, x \bmod n)
\end{array}
$$

is bijective．

Proof．

We construct its inverse．Since m and n are coprime，there exist $u, v \in \mathbb{Z}$ such that $m u+n v=1$ ．Then 中 $(m u)=(0,1)$ and 中 $(n v)=(1,0)$ ．Thus for all $y, z \in \mathbb{Z}$ ，we have中 $(y n v+z m u)=(y, z)$ ，so

$$
(\mathbb{Z} / m \mathbb{Z}) \times(\mathbb{Z} / n \mathbb{Z}) \quad \longrightarrow \quad \mathbb{Z} / m n \mathbb{Z}
$$

$(y \bmod m, z \bmod n) \longmapsto y n v+z m u \bmod m n$ is an inverse of 中．

The Chinese remainders theorem

Theorem (CRT)

Let $m, n \in \mathbb{N}$ be coprime. Then the map

$$
\begin{array}{clc}
\mathbb{Z} / m n \mathbb{Z} & \longrightarrow & (\mathbb{Z} / m \mathbb{Z}) \times(\mathbb{Z} / n \mathbb{Z}) \\
\text { 中 : } & \longrightarrow(x \bmod m n) & \longmapsto(\bmod m, x \bmod n)
\end{array}
$$

is bijective.

Example

To find $x \in \mathbb{Z}$ such that $x \equiv 1 \bmod 7$ and $x \equiv 2 \bmod 9$:
We use Euclid to find $7 u+9 v=1$ with $u=4, v=-3$.
We have $7 u=28$, which is $0 \bmod 7$ and $1 \bmod 9$; and $9 v=-27$, which is $1 \bmod 7$ and $0 \bmod 9$.
Then $x=1 \times 9 v+2 \times 7 u=29$ is $1 \bmod 7$ and $2 \bmod 9$.
The general solution is $x \equiv 29 \bmod 63$.

Application to Euler's ϕ

For m, n coprime, CRT reduces the study of $\mathbb{Z} / m n \mathbb{Z}$ to that of $\mathbb{Z} / m \mathbb{Z}$ and $\mathbb{Z} / n \mathbb{Z}$.

Example

中 induces $(\mathbb{Z} / m n \mathbb{Z})^{\times} \longleftrightarrow(\mathbb{Z} / m \mathbb{Z})^{\times} \times(\mathbb{Z} / n \mathbb{Z})^{\times}$. Thus x invertible $\bmod m n \Longleftrightarrow x$ invertible $\bmod m$ and $\bmod n$.

Application to Euler's ϕ

For m, n coprime, CRT reduces the study of $\mathbb{Z} / m n \mathbb{Z}$ to that of $\mathbb{Z} / m \mathbb{Z}$ and $\mathbb{Z} / n \mathbb{Z}$.

Example

中 induces $(\mathbb{Z} / m n \mathbb{Z})^{\times} \longleftrightarrow(\mathbb{Z} / m \mathbb{Z})^{\times} \times(\mathbb{Z} / n \mathbb{Z})^{\times}$. Thus x invertible $\bmod m n \Longleftrightarrow x$ invertible $\bmod m$ and $\bmod n$.

Corollary

ϕ is (weakly) multiplicative.

Application to Euler's ϕ

For m, n coprime, CRT reduces the study of $\mathbb{Z} / m n \mathbb{Z}$ to that of $\mathbb{Z} / m \mathbb{Z}$ and $\mathbb{Z} / n \mathbb{Z}$.

Example

中 induces $(\mathbb{Z} / m n \mathbb{Z})^{\times} \longleftrightarrow(\mathbb{Z} / m \mathbb{Z})^{\times} \times(\mathbb{Z} / n \mathbb{Z})^{\times}$. Thus x invertible $\bmod m n \Longleftrightarrow x$ invertible $\bmod m$ and $\bmod n$.

Corollary

ϕ is (weakly) multiplicative.

Theorem

Let $n=\prod_{i} p_{i}^{v_{i}}$, with the p_{i} pairwise distinct primes and the $v_{i} \geqslant 1$. Then

$$
\phi(n)=\prod_{i}\left(p_{i}-1\right) p_{i}^{v_{i}-1}=n \prod_{\substack{p \mid n \\ p \text { prime }}}\left(1-\frac{1}{p}\right)
$$

Application to Euler's ϕ

Theorem

Let $n=\prod_{i} p_{i}^{v_{i}}$, with the p_{i} pairwise distinct primes and the $v_{i} \geqslant 1$. Then

$$
\phi(n)=\prod_{i}\left(p_{i}-1\right) p_{i}^{v_{i}-1}=n \prod_{\substack{p \mid n \\ p \text { prime }}}\left(1-\frac{1}{p}\right)
$$

Proof.

By multiplicativity, $\phi\left(\prod_{i} p_{i}^{v_{i}}\right)=\prod_{i} \phi\left(p_{i}^{v_{i}}\right)$.
And in $\mathbb{Z} / p^{\nu} \mathbb{Z}$, an element is invertible iff. it is coprime to p^{v}, iff. it is coprime to p.
So exactly 1 out of p element is non-invertible.
$\rightsquigarrow p^{v-1}$ non-invertibles, and $p^{v}-p^{v-1}$ invertibles.

Additive and multiplicative order

Sequences in finite sets

Let S be a finite set, and $f: S \longrightarrow S$ a function. Define a sequence in S by picking $s_{0} \in S$ and defining inductively $s_{m+1}=f\left(s_{m}\right)$.

Theorem

Such a sequence is always ultimately periodic.

Sequences in finite sets

Let S be a finite set, and $f: S \longrightarrow S$ a function. Define a sequence in S by picking $s_{0} \in S$ and defining inductively $s_{m+1}=f\left(s_{m}\right)$.

Theorem

Such a sequence is always ultimately periodic.

Example

Sequences in finite sets

Let S be a finite set, and $f: S \longrightarrow S$ a function. Define a sequence in S by picking $s_{0} \in S$ and defining inductively $s_{m+1}=f\left(s_{m}\right)$.

Theorem

Such a sequence is always ultimately periodic.

Example

Sequences in finite sets

Let S be a finite set, and $f: S \longrightarrow S$ a function. Define a sequence in S by picking $s_{0} \in S$ and defining inductively $s_{m+1}=f\left(s_{m}\right)$.

Theorem

Such a sequence is always ultimately periodic.

Example

Sequences in finite sets

Let S be a finite set, and $f: S \longrightarrow S$ a function. Define a sequence in S by picking $s_{0} \in S$ and defining inductively $s_{m+1}=f\left(s_{m}\right)$.

Theorem

Such a sequence is always ultimately periodic.

Example

Sequences in finite sets

Let S be a finite set, and $f: S \longrightarrow S$ a function. Define a sequence in S by picking $s_{0} \in S$ and defining inductively $s_{m+1}=f\left(s_{m}\right)$.

Theorem

Such a sequence is always ultimately periodic.

Example

Sequences in finite sets

Let S be a finite set, and $f: S \longrightarrow S$ a function. Define a sequence in S by picking $s_{0} \in S$ and defining inductively $s_{m+1}=f\left(s_{m}\right)$.

Theorem

Such a sequence is always ultimately periodic.

Example

Sequences in finite sets

Let S be a finite set, and $f: S \longrightarrow S$ a function. Define a sequence in S by picking $s_{0} \in S$ and defining inductively $s_{m+1}=f\left(s_{m}\right)$.

Theorem

Such a sequence is always ultimately periodic.

Example

Sequences in finite sets

Let S be a finite set, and $f: S \longrightarrow S$ a function. Define a sequence in S by picking $s_{0} \in S$ and defining inductively $s_{m+1}=f\left(s_{m}\right)$.

Theorem

Such a sequence is always ultimately periodic.

Example

Sequences in finite sets

Let S be a finite set, and $f: S \longrightarrow S$ a function. Define a sequence in S by picking $s_{0} \in S$ and defining inductively $s_{m+1}=f\left(s_{m}\right)$.

Theorem

Such a sequence is always ultimately periodic.

Example

Tail of length 2, period of length 5 .

Additive order

Let $x \in \mathbb{Z} / n \mathbb{Z}$. Define a sequence in $\mathbb{Z} / n \mathbb{Z}$ by $s_{0}=0$ and $s_{m+1}=s_{m}+x$; thus $s_{m}=m x \in \mathbb{Z} / n \mathbb{Z}$ for all m.

Definition

The additive order of x is

$$
\mathrm{AO}(x)=\text { period of } s_{m}
$$

Example

Take $x=4 \in \mathbb{Z} / 6 \mathbb{Z}$. Then
$s_{0}=0, s_{1}=s_{0}+x=4, s_{2}=s_{1}+x=2, s_{3}=s_{2}+x=0$
$\rightsquigarrow \mathrm{AO}(4 \bmod 6)=3$.

Determination of the additive order

Theorem

For all $\bar{x} \in \mathbb{Z} / n \mathbb{Z}$, the sequence $s_{m}=m \bar{x}$ is purely periodic (no tail), and we have $\mathrm{AO}(\bar{x})=\frac{n}{\operatorname{gcd}(x, n)}$.

Proof.

Let $g=\operatorname{gcd}(x, n)$. For all $i, j \in \mathbb{Z}_{\geqslant 0}$, we have

$$
\begin{aligned}
i \bar{X}=j \bar{x} & \Longleftrightarrow i x \equiv j x \bmod n \\
& \Longleftrightarrow n \mid(i x-j x)=(i-j) x \\
& \left.\Longleftrightarrow \frac{n}{g} \right\rvert\,(i-j) \frac{x}{g} \\
& \left.\underset{\substack{\text { Gauss }}}{ }{ }_{\operatorname{gcd}\left(\frac{n}{g}, \frac{x}{g}\right)}^{\mathscr{g}}\right)=1 \\
& \Longleftrightarrow i \equiv j \bmod \frac{n}{g} .
\end{aligned}
$$

Multiplicative order

Let $x \in(\mathbb{Z} / n \mathbb{Z})^{\times}$. Define a sequence in $(\mathbb{Z} / n \mathbb{Z})^{\times}$by $t_{0}=1$ and $t_{m+1}=t_{m} \times x$; thus $t_{m}=x^{m} \in(\mathbb{Z} / n \mathbb{Z})^{\times}$for all m.

Definition

The multiplicative order of x is

$$
\mathrm{MO}(x)=\text { period of } t_{m}
$$

Example

Take $x=2 \in \mathbb{Z} / 7 \mathbb{Z}$. Then
$t_{0}=1, t_{1}=t_{0} \times x=2, t_{2}=t_{1} \times x=4, t_{3}=t_{2} \times x=1$
$\rightsquigarrow \mathrm{MO}(2 \bmod 7)=3$.

Properties of the multiplicative order

Theorem (Fermat's little theorem)

For all $x \in(\mathbb{Z} / n \mathbb{Z})^{\times}$, we have $x^{\phi(n)}=1$.

Proof.

Lagrange. Alternatively, let $(\mathbb{Z} / n \mathbb{Z})^{\times}=\left\{y_{1}, y_{2}, \cdots, y_{\phi(n)}\right\}$. As
x is invertible, the map
$(\mathbb{Z} / n \mathbb{Z})^{\times} \longrightarrow(\mathbb{Z} / n \mathbb{Z})^{\times}$
is
$y \quad \longmapsto \quad x y$
bijective with inverse $\begin{array}{ccc}(\mathbb{Z} / n \mathbb{Z})^{\times} & \longrightarrow(\mathbb{Z} / n \mathbb{Z})^{\times} \\ y & \longmapsto x^{-1} y\end{array}$, so we also have $(\mathbb{Z} / n \mathbb{Z})^{\times}=\left\{x y_{1}, x y_{2}, \cdots, x y_{\phi(n)}\right\}$. Multiplying yields

$$
y_{1} y_{2} \cdots y_{\phi(n)}=x y_{1} x y_{2} \cdots x y_{\phi(n)}=x^{\phi(n)} y_{1} y_{2} \cdots y_{\phi(n)}
$$

and we can simplify by the y_{i} because they are invertible.

Properties of the multiplicative order

Theorem (Fermat's little theorem)
 For all $x \in(\mathbb{Z} / n \mathbb{Z})^{x}$, we have $x^{\phi(n)}=1$.

Corollary

For all $\bar{x} \in(\mathbb{Z} / n \mathbb{Z})^{\times}$, the sequence $t_{m}=\bar{x}^{m}$ is purely periodic (no tail), and we have $\mathrm{MO}(\bar{x}) \mid \phi(n)$.

Corollary

For all $x \in \mathbb{Z}$ coprime to n, for all $i, j \in \mathbb{Z}$,

$$
i \equiv j \bmod \phi(n) \Longrightarrow x^{j} \equiv x^{j} \bmod n .
$$

Properties of the multiplicative order

Theorem (Fermat's little theorem)

For all $x \in(\mathbb{Z} / n \mathbb{Z})^{\times}$, we have $x^{\phi(n)}=1$.

Corollary

For all $x \in \mathbb{Z}$ coprime to n, for all $i, j \in \mathbb{Z}$,

$$
i \equiv j \bmod \phi(n) \Longrightarrow x^{i} \equiv x^{j} \bmod n .
$$

Example

What is $353^{2021} \bmod 10$?
First, $353 \equiv 3 \bmod 10$, so $353^{2021} \equiv 3^{2021} \bmod 10$.
Next, $\phi(10)=10(1-1 / 2)(1-1 / 5)=4$. As $2021 \equiv 1 \bmod 4,3^{2021} \equiv 3^{1}=3 \bmod 10$.

Primitive roots

Primitive roots

Definition

Let $x \in \mathbb{Z}$ and $n \in \mathbb{N}$. We say that x is a primitive root $\bmod n$ if $\operatorname{gcd}(x, n)=1$ and $\mathrm{MO}(x \bmod n)=\phi(n)$.

Example

$\mathrm{MO}(2 \bmod 7)=3<\phi(7)=6$, so 2 is not a primitive root $\bmod 7$.
In $\mathbb{Z} / 7 \mathbb{Z}$, we have $3^{0}=1,3^{1}=3,3^{2}=2,3^{3}=-1,3^{4}=-3$, $3^{5}=-2,3^{6}=1$. So 3 is a primitive root $\bmod 7$.

Counter-example

Primitive roots do not always exist! For instance, every $x \in(\mathbb{Z} / 8 \mathbb{Z})^{x}=\{ \pm 1, \pm 3\}$ satisfies $x^{2}=1$, so $M O(x) \mid 2$, whereas $\phi(8)=4$.

Discrete logarithm

Definition (Reminder)

Let $x \in \mathbb{Z}$ and $n \in \mathbb{N}$. We say that x is a primitive root $\bmod n$ if $\operatorname{gcd}(x, n)=1$ and $\mathrm{MO}(x \bmod n)=\phi(n)$.

Remark

Let $x \in(\mathbb{Z} / n \mathbb{Z})^{x}$. Then $\operatorname{MO}(x)=\#\left\{x^{m}, m \in \mathbb{Z}\right\}$, and every power of x is of the form x^{m} for some unique $m \in \mathbb{Z} / \mathrm{MO}(x) \mathbb{Z}$. In particular, x is a primitive root iff. $(\mathbb{Z} / n \mathbb{Z})^{\times}=\left\{x^{m}, m \in \mathbb{Z}\right\}$.

Discrete logarithm

Remark

Let $x \in(\mathbb{Z} / n \mathbb{Z})^{\times}$. Then $\operatorname{MO}(x)=\#\left\{x^{m}, m \in \mathbb{Z}\right\}$, and every power of x is of the form x^{m} for some unique $m \in \mathbb{Z} / \mathrm{MO}(x) \mathbb{Z}$. In particular, x is a primitive root iff. $(\mathbb{Z} / n \mathbb{Z})^{\times}=\left\{x^{m}, m \in \mathbb{Z}\right\}$.

Example

$\bullet=$ invertible, o=non-invertible. $\phi(n)=6$.
$\cdots \quad \mathrm{MO}=3$

Discrete logarithm

Remark

Let $x \in(\mathbb{Z} / n \mathbb{Z})^{x}$. Then $\operatorname{MO}(x)=\#\left\{x^{m}, m \in \mathbb{Z}\right\}$, and every power of x is of the form x^{m} for some unique $m \in \mathbb{Z} / \mathrm{MO}(x) \mathbb{Z}$. In particular, x is a primitive root iff. $(\mathbb{Z} / n \mathbb{Z})^{x}=\left\{x^{m}, m \in \mathbb{Z}\right\}$.

Definition (Discrete logarithm)

Suppose $g \in(\mathbb{Z} / n \mathbb{Z})^{\times}$is a primitive root. Then every $x \in(\mathbb{Z} / n \mathbb{Z})^{\times}$is of the form $x=g^{m}$ for some unique $m \in \mathbb{Z} / \phi(n) \mathbb{Z}$, which is denoted by $m=\log _{g} x \in \mathbb{Z} / \phi(n) \mathbb{Z}$.

Discrete logarithm

Definition (Discrete logarithm)

Suppose $g \in(\mathbb{Z} / n \mathbb{Z})^{\times}$is a primitive root. Then every $x \in(\mathbb{Z} / n \mathbb{Z})^{\times}$is of the form $x=g^{m}$ for some unique $m \in \mathbb{Z} / \phi(n) \mathbb{Z}$, which is denoted by $m=\log _{g} x \in \mathbb{Z} / \phi(n) \mathbb{Z}$.

Example

Using the primitive root $g=3 \in(\mathbb{Z} / 7 \mathbb{Z})^{\times}$, we have

$$
\log _{g}(-1 \bmod 7)=3 \bmod 6, \quad \text { because } g^{3}=-1 \bmod 7
$$

and indeed

$$
g^{m}=-1 \bmod 7 \Longleftrightarrow m \equiv 3 \bmod 6
$$

Calculation of MO

Lemma (MO lemma)

Let $x \in(\mathbb{Z} / n \mathbb{Z})^{\times}$. Then for all $m \in \mathbb{Z}$, we have $\left(x^{m}\right)^{\mathrm{MO}(x)}=1$ so $\mathrm{MO}\left(x^{m}\right) \mid \operatorname{MO}(x)$, and in fact $\mathrm{MO}\left(x^{m}\right)=\frac{\mathrm{MO}(x)}{\operatorname{gcd}(m, \operatorname{MO}(x))}$.

Proof.

Recall that for all $k \in \mathbb{Z}$, we have $x^{k}=1 \Longleftrightarrow \operatorname{MO}(x) \mid k$.
First, $\left(x^{m}\right)^{\mathrm{MO}(x)}=x^{m \mathrm{MO}(x)}=\left(x^{\mathrm{MO}(x)}\right)^{m}=1^{m}=1$.
Let $m \in \mathbb{Z}$, and let $g=\operatorname{gcd}(m, \mathrm{MO}(x))$; then for all $k \in \mathbb{Z}$,

$$
\begin{aligned}
\left(x^{m}\right)^{k}=1 & \Longleftrightarrow x^{m k}=1 \\
& \Longleftrightarrow \operatorname{MO}(x) \mid m k \\
& \left.\Longleftrightarrow \frac{\operatorname{MO}(x)}{g} \right\rvert\, \frac{m}{g} k \\
& \left.\Longleftrightarrow \frac{\text { Gauss }}{} \frac{\operatorname{MO}(x)}{g} \right\rvert\, k .
\end{aligned}
$$

Calculation of MO

Lemma (MO lemma)

Let $x \in(\mathbb{Z} / n \mathbb{Z})^{\times}$. Then for all $m \in \mathbb{Z}$, we have $\left(x^{m}\right)^{\mathrm{MO}(x)}=1$ so $\mathrm{MO}\left(x^{m}\right) \mid \operatorname{MO}(x)$, and in fact $\mathrm{MO}\left(x^{m}\right)=\frac{\mathrm{MO}(x)}{\operatorname{gcd}(m, \operatorname{MO}(x))}$.

Corollary

Suppose $g \in(\mathbb{Z} / n \mathbb{Z})^{\times}$is a primitive root. Then for all $x \in(\mathbb{Z} / n \mathbb{Z})^{\times}$,

$$
\mathrm{MO}(x)=\frac{\phi(n)}{\operatorname{gcd}\left(\phi(n), \log _{g} x\right)}
$$

Corollary

If there exist primitive roots in $\mathbb{Z} / n \mathbb{Z}$, then there are exactly $\phi(\phi(n))$ of them.

Primitive roots $\bmod p$

Lemma

Let $p \in \mathbb{N}$ prime, and $F(x)=x^{d}+a_{d-1} x^{d-1}+\cdots+a_{1} x+a_{0}$ a polynomial of degree d with coefficients in $\mathbb{Z} / p \mathbb{Z}$.
Then $F(x)$ has at most d roots in $\mathbb{Z} / p \mathbb{Z}$.
Counter-example
The polynomial $x^{2}-1$ has degree 2 , but all 4 elements of $(\mathbb{Z} / 8 \mathbb{Z})^{\times}=\{ \pm 1, \pm 3\}$ are roots of it.

Primitive roots $\bmod p$

Lemma

Let $p \in \mathbb{N}$ prime, and $F(x)=x^{d}+a_{d-1} x^{d-1}+\cdots+a_{1} x+a_{0}$ a polynomial of degree d with coefficients in $\mathbb{Z} / p \mathbb{Z}$.
Then $F(x)$ has at most d roots in $\mathbb{Z} / p \mathbb{Z}$.

Proof.

We prove by induction on $n \geqslant 1$ that if z_{1}, \cdots, z_{n} are distinct roots, then $F(x)=\left(x-z_{1}\right) \cdots\left(x-z_{n}\right) G(x)$.
For $n=1$, shift variable $x=y+z_{1}: F(x)=F\left(y+z_{1}\right)=y G(y)$. And if z_{n+1} is another root of $F(x)=\left(x-z_{1}\right) \cdots\left(x-z_{n}\right) G(x)$, then $\left(z_{n+1}-z_{1}\right) \cdots\left(z_{n+1}-z_{n}\right) G\left(z_{n+1}\right)=0$, so $G\left(z_{n+1}\right)=0$ because p is prime.

Primitive roots $\bmod p$

Lemma

Let $p \in \mathbb{N}$ prime, and $F(x)=x^{d}+a_{d-1} x^{d-1}+\cdots+a_{1} x+a_{0}$ a polynomial of degree d with coefficients in $\mathbb{Z} / p \mathbb{Z}$.
Then $F(x)$ has at most d roots in $\mathbb{Z} / p \mathbb{Z}$.

Lemma

For all $n \in \mathbb{N}$, we have $\sum_{d \mid n} \phi(d)=n$.

Proof.

Consider the n fractions $\frac{0}{n}, \frac{1}{n}, \frac{2}{n}, \cdots, \frac{n-1}{n}$. When we simplify them, we get the $\frac{x}{d}$ with $d \mid n, \operatorname{gcd}(x, d)=1$, and $0 \leqslant x<d$. For each d, there are $\phi(d)$ such fractions.

Primitive roots $\bmod p$

Lemma

Let $p \in \mathbb{N}$ prime, and $F(x)=x^{d}+a_{d-1} x^{d-1}+\cdots+a_{1} x+a_{0}$ a polynomial of degree d with coefficients in $\mathbb{Z} / p \mathbb{Z}$.
Then $F(x)$ has at most d roots in $\mathbb{Z} / p \mathbb{Z}$.

Lemma

For all $n \in \mathbb{N}$, we have $\sum_{d \mid n} \phi(d)=n$.

Theorem

For all $p \in \mathbb{N}$ prime, there are $\phi(p-1)>0$ primitive roots in $\mathbb{Z} / p \mathbb{Z}$.

Primitive roots $\bmod p$: proof

Lemma

For all $d \in \mathbb{N}$, let

$$
Y_{d}=\left\{y \in(\mathbb{Z} / p \mathbb{Z})^{\times} \mid \mathrm{MO}(y)=d\right\}, \quad \psi(d)=\# Y_{d} .
$$

Then $\psi(d) \leqslant \phi(d)$ for all d.

Proof.

If $Y_{d}=\emptyset$, then $\psi(d)=0<\phi(d)$ so OK. By Fermat, this always happens if $d \nmid \phi(p)$.
Else, let $y \in Y_{d}$. Then $\mathrm{MO}(y)=d$, so $\left\{y^{m}, m \in \mathbb{Z}\right\}$ has d elements. By MO lemma, they are all roots of $x^{d}-1$; thus $\left\{y^{m}, m \in \mathbb{Z}\right\}=\left\{\right.$ roots of $\left.x^{d}-1\right\}$. In particular, every element of Y_{d} is a power of y. Therefore

$$
Y_{d}=\left\{y^{m} \mid m \in \mathbb{Z} / d \mathbb{Z}, \operatorname{MO}\left(y^{m}\right)=d\right\}=\left\{y^{m} \mid m \in(\mathbb{Z} / d \mathbb{Z})^{\times}\right\}
$$ by MO lemma, whence $\psi(d)=\phi(d)$.

Primitive roots $\bmod p:$ proof

Lemma

For all $d \in \mathbb{N}$, let

$$
Y_{d}=\left\{y \in(\mathbb{Z} / p \mathbb{Z})^{\times} \mid \mathrm{MO}(y)=d\right\}, \quad \psi(d)=\# Y_{d} .
$$

Then $\psi(d) \leqslant \phi(d)$ for all d.

Proof of Theorem.

We have

$$
\phi(p)=\#(\mathbb{Z} / p \mathbb{Z})^{\times}=\sum_{d \mid \phi(p)} \psi(d) \leqslant \sum_{d \phi(p)} \phi(d)=\phi(p) .
$$

This forces $\psi(d)=\phi(d)$ for all $d \mid \phi(p)$; in particular for $d=\phi(p)$ we have $\psi(\phi(p))=\phi(\phi(p))=\phi(p-1)$.

Finding primitive roots

Lemma

Let $x \in(\mathbb{Z} / n \mathbb{Z})^{\times}$, and let $k \in \mathbb{N}$ be such that $x^{k}=1$. Then $\mathrm{MO}(x)=k$ iff. for all primes $p \mid k, x^{k / p} \neq 1$.

Proof.

We have that $\mathrm{MO}(x) \mid k$, so

$$
\mathrm{MO}(x)<k \Longleftrightarrow k / \mathrm{MO}(x) \geqslant 2
$$

\Longleftrightarrow there is a prime $p \left\lvert\, \frac{k}{\operatorname{MO}(x)}\right.$
\Longleftrightarrow there is a prime p s.t. $\operatorname{MO}(x) \left\lvert\, \frac{k}{p}\right.$.

Finding primitive roots

Lemma

Let $x \in(\mathbb{Z} / n \mathbb{Z})^{\times}$, and let $k \in \mathbb{N}$ be such that $x^{k}=1$. Then $\mathrm{MO}(x)=k$ iff. for all primes $p \mid k, x^{k / p} \neq 1$.

Example

What is $\mathrm{MO}(7 \bmod 19)$?
We have $\phi(19)=18=2 \times 3^{2}$.
We compute in $\mathbb{Z} / 19 \mathbb{Z}$ that $7^{18 / 3}=7^{6}=1$,
so $\mathrm{MO}(7 \bmod 19) \mid 6=2 \times 3$.
Next, $7^{6 / 3} \neq 1$, so $\mathrm{MO}(7 \bmod 19) \nmid 2$, but $7^{6 / 2}=1$ so $\mathrm{MO}(7 \bmod 19) \mid 3$.
Finally, $7^{3 / 3} \neq 1$, so $\mathrm{MO}(7 \bmod 19) \nmid 1$; thus
$\mathrm{MO}(7 \bmod 19)=3$.

Finding primitive roots

Lemma

Let $x \in(\mathbb{Z} / n \mathbb{Z})^{\times}$, and let $k \in \mathbb{N}$ be such that $x^{k}=1$. Then $\mathrm{MO}(x)=k$ iff. for all primes $p \mid k, x^{k / p} \neq 1$.

Corollary

Let $x \in(\mathbb{Z} / n \mathbb{Z})^{\times}$. Then x is a primitive root iff. for all primes $p \mid \phi(n)$, we have $x^{\phi(n) / p} \neq 1$.

Example

We want to find a primitive root in $\mathbb{Z} / 11 \mathbb{Z}$. We have $\phi(11)=10=2 \times 5$, so the proportion of primitive roots in $(\mathbb{Z} / 11 \mathbb{Z})^{\times}$is $\phi(10) / 10=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{5}\right)=40 \%$.
We try $x=2$; as

$$
2^{2}=4 \neq 1 \bmod 11 \text { and } 2^{5}=32=-1 \neq 1 \bmod 11,
$$

2 is a primitive root.

